Spaces:
Runtime error
Runtime error
File size: 2,369 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : peike.li@yahoo.com
@File : schp.py
@Time : 4/8/19 2:11 PM
@Desc :
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import torch
import modules
def moving_average(net1, net2, alpha=1):
for param1, param2 in zip(net1.parameters(), net2.parameters()):
param1.data *= (1.0 - alpha)
param1.data += param2.data * alpha
def _check_bn(module, flag):
if issubclass(module.__class__, modules.bn.InPlaceABNSync):
flag[0] = True
def check_bn(model):
flag = [False]
model.apply(lambda module: _check_bn(module, flag))
return flag[0]
def reset_bn(module):
if issubclass(module.__class__, modules.bn.InPlaceABNSync):
module.running_mean = torch.zeros_like(module.running_mean)
module.running_var = torch.ones_like(module.running_var)
def _get_momenta(module, momenta):
if issubclass(module.__class__, modules.bn.InPlaceABNSync):
momenta[module] = module.momentum
def _set_momenta(module, momenta):
if issubclass(module.__class__, modules.bn.InPlaceABNSync):
module.momentum = momenta[module]
def bn_re_estimate(loader, model):
if not check_bn(model):
print('No batch norm layer detected')
return
model.train()
momenta = {}
model.apply(reset_bn)
model.apply(lambda module: _get_momenta(module, momenta))
n = 0
for i_iter, batch in enumerate(loader):
images, labels, _ = batch
b = images.data.size(0)
momentum = b / (n + b)
for module in momenta.keys():
module.momentum = momentum
model(images)
n += b
model.apply(lambda module: _set_momenta(module, momenta))
def save_schp_checkpoint(states, is_best_parsing, output_dir, filename='schp_checkpoint.pth.tar'):
save_path = os.path.join(output_dir, filename)
if os.path.exists(save_path):
os.remove(save_path)
torch.save(states, save_path)
if is_best_parsing and 'state_dict' in states:
best_save_path = os.path.join(output_dir, 'model_parsing_best.pth.tar')
if os.path.exists(best_save_path):
os.remove(best_save_path)
torch.save(states, best_save_path)
|