Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, elementwise_affine=True, eps: float = 1e-6): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
super().__init__() | |
self.eps = eps | |
if elementwise_affine: | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
""" | |
Apply the RMSNorm normalization to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
""" | |
Forward pass through the RMSNorm layer. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying RMSNorm. | |
""" | |
output = self._norm(x.float()).type_as(x) | |
if hasattr(self, "weight"): | |
output = output * self.weight | |
return output | |
class GroupNorm32(nn.GroupNorm): | |
def __init__(self, num_groups, num_channels, eps=1e-5, dtype=None): | |
super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps, dtype=dtype) | |
def forward(self, x): | |
y = super().forward(x).to(x.dtype) | |
return y | |
def normalization(channels, dtype=None): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(num_channels=channels, num_groups=32, dtype=dtype) | |