HunyuanDiT / hydit /modules /norm_layers.py
multimodalart's picture
Upload 57 files
8a09a62 verified
raw
history blame
1.99 kB
import torch
import torch.nn as nn
class RMSNorm(nn.Module):
def __init__(self, dim: int, elementwise_affine=True, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
if hasattr(self, "weight"):
output = output * self.weight
return output
class GroupNorm32(nn.GroupNorm):
def __init__(self, num_groups, num_channels, eps=1e-5, dtype=None):
super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps, dtype=dtype)
def forward(self, x):
y = super().forward(x).to(x.dtype)
return y
def normalization(channels, dtype=None):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return GroupNorm32(num_channels=channels, num_groups=32, dtype=dtype)