File size: 13,817 Bytes
8d34f50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import argparse
from nerf_triplane.provider import NeRFDataset
from nerf_triplane.utils import *
from nerf_triplane.network import NeRFNetwork
# torch.autograd.set_detect_anomaly(True)
# Close tf32 features. Fix low numerical accuracy on rtx30xx gpu.
try:
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
except AttributeError as e:
print('Info. This pytorch version is not support with tf32.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye")
parser.add_argument('--test', action='store_true', help="test mode (load model and test dataset)")
parser.add_argument('--test_train', action='store_true', help="test mode (load model and train dataset)")
parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
### training options
parser.add_argument('--iters', type=int, default=200000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-2, help="initial learning rate")
parser.add_argument('--lr_net', type=float, default=1e-3, help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
### loss set
parser.add_argument('--warmup_step', type=int, default=10000, help="warm up steps")
parser.add_argument('--amb_aud_loss', type=int, default=1, help="use ambient aud loss")
parser.add_argument('--amb_eye_loss', type=int, default=1, help="use ambient eye loss")
parser.add_argument('--unc_loss', type=int, default=1, help="use uncertainty loss")
parser.add_argument('--lambda_amb', type=float, default=1e-4, help="lambda for ambient loss")
parser.add_argument('--pyramid_loss', type=int, default=0, help="use perceptual loss")
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--bg_img', type=str, default='', help="background image")
parser.add_argument('--fbg', action='store_true', help="frame-wise bg")
parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes")
parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye")
parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence")
parser.add_argument('--bs_area', type=str, default="upper", help="upper or eye")
parser.add_argument('--au45', action='store_true', help="use openface au45")
parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform")
### dataset options
parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.")
# (the default value is for the fox dataset)
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)")
parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)")
parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")
parser.add_argument('--init_lips', action='store_true', help="init lips region")
parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region")
parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...")
parser.add_argument('--torso', action='store_true', help="fix head and train torso")
parser.add_argument('--head_ckpt', type=str, default='', help="head model")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=450, help="GUI width")
parser.add_argument('--H', type=int, default=450, help="GUI height")
parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
### else
parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)")
parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)")
parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits")
parser.add_argument('--portrait', action='store_true', help="only render face")
parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off")
parser.add_argument('--ind_num', type=int, default=20000, help="number of individual codes, should be larger than training dataset size")
parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off")
parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension")
parser.add_argument('--part', action='store_true', help="use partial training data (1/10)")
parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)")
parser.add_argument('--train_camera', action='store_true', help="optimize camera pose")
parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size")
parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size")
# asr
parser.add_argument('--asr', action='store_true', help="load asr for real-time app")
parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input")
parser.add_argument('--asr_play', action='store_true', help="play out the audio")
parser.add_argument('--asr_model', type=str, default='deepspeech')
parser.add_argument('--asr_save_feats', action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length (unit: 20ms)
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-r', type=int, default=10)
opt = parser.parse_args()
if opt.O:
opt.fp16 = True
opt.exp_eye = True
if opt.test and False:
opt.smooth_path = True
opt.smooth_eye = True
opt.smooth_lips = True
opt.cuda_ray = True
# assert opt.cuda_ray, "Only support CUDA ray mode."
if opt.patch_size > 1:
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
# if opt.finetune_lips:
# # do not update density grid in finetune stage
# opt.update_extra_interval = 1e9
print(opt)
seed_everything(opt.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeRFNetwork(opt)
# manually load state dict for head
if opt.torso and opt.head_ckpt != '':
model_dict = torch.load(opt.head_ckpt, map_location='cpu')['model']
missing_keys, unexpected_keys = model.load_state_dict(model_dict, strict=False)
if len(missing_keys) > 0:
print(f"[WARN] missing keys: {missing_keys}")
if len(unexpected_keys) > 0:
print(f"[WARN] unexpected keys: {unexpected_keys}")
# freeze these keys
for k, v in model.named_parameters():
if k in model_dict:
print(f'[INFO] freeze {k}, {v.shape}')
v.requires_grad = False
# print(model)
# criterion = torch.nn.MSELoss(reduction='none')
criterion = torch.nn.L1Loss(reduction='none')
if opt.test:
if opt.gui:
metrics = [] # use no metric in GUI for faster initialization...
else:
# metrics = [PSNRMeter(), LPIPSMeter(device=device)]
metrics = [PSNRMeter(), LPIPSMeter(device=device), LMDMeter(backend='fan')]
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt)
if opt.test_train:
test_set = NeRFDataset(opt, device=device, type='train')
# a manual fix to test on the training dataset
test_set.training = False
test_set.num_rays = -1
test_loader = test_set.dataloader()
else:
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
# temp fix: for update_extra_states
model.aud_features = test_loader._data.auds
model.eye_areas = test_loader._data.eye_area
if opt.gui:
from nerf_triplane.gui import NeRFGUI
# we still need test_loader to provide audio features for testing.
with NeRFGUI(opt, trainer, test_loader) as gui:
gui.render()
else:
### test and save video (fast)
trainer.test(test_loader)
### evaluate metrics (slow)
if test_loader.has_gt:
trainer.evaluate(test_loader)
else:
optimizer = lambda model: torch.optim.AdamW(model.get_params(opt.lr, opt.lr_net), betas=(0, 0.99), eps=1e-8)
train_loader = NeRFDataset(opt, device=device, type='train').dataloader()
assert len(train_loader) < opt.ind_num, f"[ERROR] dataset too many frames: {len(train_loader)}, please increase --ind_num to this number!"
# temp fix: for update_extra_states
model.aud_features = train_loader._data.auds
model.eye_area = train_loader._data.eye_area
model.poses = train_loader._data.poses
# decay to 0.1 * init_lr at last iter step
if opt.finetune_lips:
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.05 ** (iter / opt.iters))
else:
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.5 ** (iter / opt.iters))
metrics = [PSNRMeter(), LPIPSMeter(device=device),LMDMeter(backend='fan')]
eval_interval = max(1, int(5000 / len(train_loader)))
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.ckpt, eval_interval=eval_interval)
with open(os.path.join(opt.workspace, 'opt.txt'), 'a') as f:
f.write(str(opt))
if opt.gui:
with NeRFGUI(opt, trainer, train_loader) as gui:
gui.render()
else:
valid_loader = NeRFDataset(opt, device=device, type='val', downscale=1).dataloader()
max_epochs = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
print(f'[INFO] max_epoch = {max_epochs}')
trainer.train(train_loader, valid_loader, max_epochs)
# free some mem
del train_loader, valid_loader
torch.cuda.empty_cache()
# also test
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
if test_loader.has_gt:
trainer.evaluate(test_loader) # blender has gt, so evaluate it.
trainer.test(test_loader)
|