Spaces:
Runtime error
Runtime error
File size: 6,514 Bytes
c34fe27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# -*- coding: utf-8 -*-
"""Untitled0.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/13kE5uGoL2gfzSwTJli-WZolqCNBZXxNV
"""
import tensorflow as tf
import numpy as np
import pandas as pd
import streamlit as st
import re
import os
import csv
from tqdm import tqdm
import faiss
from nltk.translate.bleu_score import sentence_bleu
from datetime import datetime
def decontractions(phrase):
"""decontracted takes text and convert contractions into natural form.
ref: https://stackoverflow.com/questions/19790188/expanding-english-language-contractions-in-python/47091490#47091490"""
# specific
phrase = re.sub(r"won\'t", "will not", phrase)
phrase = re.sub(r"can\'t", "can not", phrase)
phrase = re.sub(r"won\’t", "will not", phrase)
phrase = re.sub(r"can\’t", "can not", phrase)
# general
phrase = re.sub(r"n\'t", " not", phrase)
phrase = re.sub(r"\'re", " are", phrase)
phrase = re.sub(r"\'s", " is", phrase)
phrase = re.sub(r"\'d", " would", phrase)
phrase = re.sub(r"\'ll", " will", phrase)
phrase = re.sub(r"\'t", " not", phrase)
phrase = re.sub(r"\'ve", " have", phrase)
phrase = re.sub(r"\'m", " am", phrase)
phrase = re.sub(r"n\’t", " not", phrase)
phrase = re.sub(r"\’re", " are", phrase)
phrase = re.sub(r"\’s", " is", phrase)
phrase = re.sub(r"\’d", " would", phrase)
phrase = re.sub(r"\’ll", " will", phrase)
phrase = re.sub(r"\’t", " not", phrase)
phrase = re.sub(r"\’ve", " have", phrase)
phrase = re.sub(r"\’m", " am", phrase)
return phrase
def preprocess(text):
# convert all the text into lower letters
# remove the words betweent brakets ()
# remove these characters: {'$', ')', '?', '"', '’', '.', '°', '!', ';', '/', "'", '€', '%', ':', ',', '('}
# replace these spl characters with space: '\u200b', '\xa0', '-', '/'
text = text.lower()
text = decontractions(text)
text = re.sub('[$)\?"’.°!;\'€%:,(/]', '', text)
text = re.sub('\u200b', ' ', text)
text = re.sub('\xa0', ' ', text)
text = re.sub('-', ' ', text)
return text
#importing bert tokenizer and loading the trained question embedding extractor model
from transformers import AutoTokenizer, TFGPT2Model
@st.cache(allow_output_mutation=True)
def return_biobert_tokenizer_model():
'''returns pretrained biobert tokenizer and question extractor model'''
biobert_tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/BioRedditBERT-uncased")
question_extractor_model1=tf.keras.models.load_model('question_extractor_model_2_11')
return biobert_tokenizer,question_extractor_model1
#importing gpt2 tokenizer and loading the trained gpt2 model
from transformers import GPT2Tokenizer,TFGPT2LMHeadModel
@st.cache(allow_output_mutation=True)
def return_gpt2_tokenizer_model():
'''returns pretrained gpt2 tokenizer and gpt2 model'''
gpt2_tokenizer=GPT2Tokenizer.from_pretrained("gpt2")
tf_gpt2_model=TFGPT2LMHeadModel.from_pretrained("tf_gpt2_model_2_118_50000")
return gpt2_tokenizer,tf_gpt2_model
#preparing the faiss search
qa=pd.read_pickle('train_gpt_data.pkl')
question_bert = qa["Q_FFNN_embeds"].tolist()
answer_bert = qa["A_FFNN_embeds"].tolist()
question_bert = np.array(question_bert)
answer_bert = np.array(answer_bert)
question_bert = question_bert.astype('float32')
answer_bert = answer_bert.astype('float32')
answer_index = faiss.IndexFlatIP(answer_bert.shape[-1])
question_index = faiss.IndexFlatIP(question_bert.shape[-1])
answer_index.add(answer_bert)
question_index.add(question_bert)
print('finished initializing')
#defining function to prepare the data for gpt inference
#https://github.com/ash3n/DocProduct
def preparing_gpt_inference_data(gpt2_tokenizer,question,question_embedding):
topk=20
scores,indices=answer_index.search(
question_embedding.astype('float32'), topk)
q_sub=qa.iloc[indices.reshape(20)]
line = '`QUESTION: %s `ANSWER: ' % (
question)
encoded_len=len(gpt2_tokenizer.encode(line))
for i in q_sub.iterrows():
line='`QUESTION: %s `ANSWER: %s ' % (i[1]['question'],i[1]['answer']) + line
line=line.replace('\n','')
encoded_len=len(gpt2_tokenizer.encode(line))
if encoded_len>=1024:
break
return gpt2_tokenizer.encode(line)[-1024:]
#function to generate answer given a question and the required answer length
def give_answer(question,answer_len):
preprocessed_question=preprocess(question)
question_len=len(preprocessed_question.split(' '))
truncated_question=preprocessed_question
if question_len>500:
truncated_question=' '.join(preprocessed_question.split(' ')[:500])
biobert_tokenizer,question_extractor_model1= return_biobert_tokenizer_model()
gpt2_tokenizer,tf_gpt2_model= return_gpt2_tokenizer_model()
encoded_question= biobert_tokenizer.encode(truncated_question)
max_length=512
padded_question=tf.keras.preprocessing.sequence.pad_sequences(
[encoded_question], maxlen=max_length, padding='post')
question_mask=[[1 if token!=0 else 0 for token in question] for question in padded_question]
embeddings=question_extractor_model1({'question':np.array(padded_question),'question_mask':np.array(question_mask)})
gpt_input=preparing_gpt_inference_data(gpt2_tokenizer,truncated_question,embeddings.numpy())
mask_start = len(gpt_input) - list(gpt_input[::-1]).index(4600) + 1
input=gpt_input[:mask_start+1]
if len(input)>(1024-answer_len):
input=input[-(1024-answer_len):]
gpt2_output=gpt2_tokenizer.decode(tf_gpt2_model.generate(input_ids=tf.constant([np.array(input)]),max_length=1024,temperature=0.7)[0])
answer=gpt2_output.rindex('`ANSWER: ')
return gpt2_output[answer+len('`ANSWER: '):]
#defining the final function to generate answer assuming default answer length to be 20
def final_func_1(question):
answer_len=25
return give_answer(question,answer_len)
def main():
st.title('Medical Chatbot')
question=st.text_input('Question',"Type Here")
result=""
if st.button('ask'):
#with st.spinner("You Know! an apple a day keeps doctor away!"):
start=datetime.now()
result=final_func_1(question)
end_time =datetime.now()
st.success("Here is the answer")
st.text(result)
st.text("result recieved within "+str((end_time-start).total_seconds()))
if __name__=='__main__':
main() |