File size: 8,255 Bytes
989c7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38b397
 
 
 
 
 
 
989c7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38b397
989c7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import streamlit as st
import pickle
import pandas as pd
import seaborn as sns
import sklearn
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,plot_confusion_matrix,classification_report
from imblearn.over_sampling import RandomOverSampler
import numpy as np
from sklearn.preprocessing import StandardScaler,OneHotEncoder
from sklearn.compose import make_column_transformer
import warnings
warnings.filterwarnings("ignore")



# Load Data
@st.cache(allow_output_mutation=True)
def loading_data():
    df = pd.read_csv("diabetes_012__health_indicators_BRFSS2015.csv")

    #convert all columns to integer
    for col in df.columns:
        df[col] = df[col].astype("int")

    # Drop duplicated rows
    df_ = df.drop_duplicates()
    df=df_

    X,y = df.drop(['Diabetes_012'],axis=1),df['Diabetes_012'].values
    classes = np.unique(y)

    #Oversampling data
    randomSampler = RandomOverSampler(sampling_strategy='all',random_state=24)
    X_new,y_new = randomSampler.fit_resample(X,y)
   
    new_df = X_new.copy()
    new_df["Diabetes_012"] = y_new

    Xtrain,Xtest,Ytrain,Ytest = train_test_split(X_new,y_new,test_size=0.2,random_state=24,stratify=y_new)

    

    # Some feature engineering 
    Xtrain_transf = Xtrain.copy()

    Xtrain_transf["Age2"] = Xtrain_transf["Age"]**2

    ## Numerical column transformation
    col_num=["BMI","MentHlth","PhysHlth","Age","Age2"]
    num_col_trans = make_column_transformer((StandardScaler(),col_num),remainder="passthrough")
    Xtrain_transf_std = num_col_trans.fit_transform(Xtrain_transf,Ytrain)
    Xtrain_transf_std = pd.DataFrame(Xtrain_transf_std ,columns=list(Xtrain_transf.columns) )
    # Données tests:
    Xtest_transf = Xtest.copy()
    Xtest_transf["Age2"] = Xtest_transf["Age"]**2
    Xtest_transf_std = num_col_trans.transform(Xtest_transf)
    Xtest_transf_std = pd.DataFrame(Xtest_transf_std ,columns=list(Xtest_transf.columns) )


    ## Categorical columns transformation
    col_cat = ["GenHlth","Education","Income"]
    cat_col_trans = make_column_transformer((OneHotEncoder(handle_unknown = 'ignore'),col_cat),remainder="passthrough")
    Xtrain_transf_std_encoded = cat_col_trans.fit_transform(Xtrain_transf_std,Ytrain)
    # Sur les données tests :
    Xtest_encoded = cat_col_trans.transform(Xtest_transf_std)


    

    results = {"Xtrain": Xtrain,
                "Ytrain": Ytrain,
                "Xtest_encoded": Xtest_encoded,
                "Ytest": Ytest,
                "num_col_trans": num_col_trans,
                "cat_col_trans": cat_col_trans}


    return results






# Function for plotting the feature importance

@st.cache(allow_output_mutation=True)
def Plot_feature_importance(my_model,X_train):
    feature_importance = my_model.feature_importances_
    columns_name = list(X_train.columns)

    dico_importance = {col:var_imp for var_imp,col in zip(feature_importance,columns_name)}
    col_imp = ["Features","Importance"]
    df_importance = pd.DataFrame(dico_importance,index=[0]).T.reset_index()
    df_importance.columns = col_imp
    df_importance = df_importance.sort_values("Importance",ascending=False)
    sort_col_desc = list(df_importance["Features"].values)

    df_importance["Features"] = df_importance["Features"].astype("category")

    return df_importance,sort_col_desc



# Function use to get the user input data
def user_input():
    Sex_txt = st.sidebar.selectbox('Sex',("homme","femme"))
    if Sex_txt=="homme":
        Sex = 0
    else:
        Sex = 1
    HighBP = int(st.sidebar.selectbox('HighBP',(0,1) ))
    HighChol = int(st.sidebar.selectbox('HighChol',(0,1),0 ))
    CholCheck = int(st.sidebar.selectbox('CholCheck',(0,1) ))
    Smoker = int(st.sidebar.selectbox('Smoker',(0,1) ))
    Stroke = int(st.sidebar.selectbox('Stroke',(0,1),1 ))
    HeartDiseaseorAttack = int(st.sidebar.selectbox('HeartDiseaseorAttack',(0,1) ))
    PhysActivity = int(st.sidebar.selectbox('PhysActivity',(0,1) ))
    Fruits = int(st.sidebar.selectbox('Fruits',(0,1),1 ))
    Veggies = int(st.sidebar.selectbox('Veggies',(0,1) ))
    HvyAlcoholConsump = int(st.sidebar.selectbox('HvyAlcoholConsump',(0,1),1 ))
    AnyHealthcare = int(st.sidebar.selectbox('AnyHealthcare',(0,1) ))
    NoDocbcCost = int(st.sidebar.selectbox('NoDocbcCost',(0,1) ))
    DiffWalk = int(st.sidebar.selectbox('DiffWalk',(0,1) ))

    GenHlth = int(st.sidebar.slider('GenHlth',1,5,3,step=1 ))
    MentHlth = int(st.sidebar.slider('MentHlth',0,30,value=10,step=1 ))
    PhysHlth = int(st.sidebar.slider('PhysHlth',0,30,value=8,step=1 ))
    BMI = int(st.sidebar.slider('BMI',12,98,70 ))
    Age = int(st.sidebar.slider('Age',1,13,value=12,step=1 ))
    Education = int(st.sidebar.slider('Education',1,6,value=5,step=1 ))
    Income = int(st.sidebar.slider('Income',1,8,value=2,step=1 ))

    user_data = {'HighBP':HighBP, 'HighChol':HighChol, 'CholCheck':CholCheck, 'BMI':BMI, 'Smoker':Smoker,
       'Stroke':Stroke, 'HeartDiseaseorAttack':HeartDiseaseorAttack, 'PhysActivity':PhysActivity, 'Fruits':Fruits, 'Veggies':Veggies,
       'HvyAlcoholConsump':HvyAlcoholConsump, 'AnyHealthcare':AnyHealthcare, 'NoDocbcCost':NoDocbcCost, 'GenHlth':GenHlth,
       'MentHlth':MentHlth, 'PhysHlth':PhysHlth, 'DiffWalk':DiffWalk, 'Sex':Sex, 'Age':Age, 'Education':Education,
       'Income':Income}
    
    user_df = pd.DataFrame(user_data,index=[0])

    return user_df




# Prepare user input data before fitting it to the model

def prepare_user_df(user_data,num_trans,col_trans):
    user_data["Age2"] = user_data["Age"]**2 
    user_data_std = num_trans.transform(user_data)
    user_data_std = pd.DataFrame(user_data_std ,columns=list(user_data.columns) )

    user_data_encoded = col_trans.transform(user_data_std)

    return user_data_encoded
    
    
    
    
 
 
 # Create Web App
st.title("Machine Learning Demo :")
st.header("Prédiction de la santé d'un patient concernant le diabète")


st.subheader("Matrice de corrélation sur les données dédoublonnées")
img_path = "corr_matrix.PNG"
st.image(img_path)

st.subheader("La courbe ROC associée au model de RandomForest choisi")
img_path_roc = "ROC_Model_RF.PNG"
st.image(img_path_roc)



st.sidebar.header("Features")


st.subheader("Table à prédire :")
user_df = user_input()
st.dataframe(user_df)




target_names = ['0: no diabetes', '1: prediabetes', '2: diabetes']




#LOADING THE DATA
results = loading_data()

Xtrain = results["Xtrain"]
Ytrain = results["Ytrain"]
Xtest_encoded = results["Xtest_encoded"]
Ytest = results["Ytest"]
num_col_trans = results["num_col_trans"]
cat_col_trans = results["cat_col_trans"]


## Load Model from pickle file
with open("Model_package.pkl","rb") as f:
    Model_package = pickle.load(f)
    model = Model_package['my_classif']
    num_col_trans = Model_package['num_col_trans']
    cat_col_trans = Model_package['cat_col_trans']

# Plot the features Importance
st.subheader("Importance des variables :")
df_importance,sort_col_desc = Plot_feature_importance(model,Xtrain)
fig2 , ax2 = plt.subplots(figsize=(12,8))
sns.barplot(x="Importance",y="Features",data = df_importance,orient="h",ax=ax2,order=sort_col_desc)
plt.grid(visible=False)
st.pyplot(fig2)








# PREDICTION



#Taux d'erreur de validation
Ypred_test = model.predict(Xtest_encoded)
st.subheader("Performance du model sur les données de validation : RandomForestClassifier ")
classif_report = pd.DataFrame(classification_report(Ytest,Ypred_test,output_dict=True,target_names = target_names )).T
classif_report["support"] = classif_report["support"].apply(lambda x: int(x))
st.write(classif_report)


#Prepapre the input user before fitting to the model
user_df_prepared = prepare_user_df(user_df,num_col_trans,cat_col_trans)

pred = model.predict(user_df_prepared)
pred_class = str(target_names[int(pred)])

 


st.subheader("Prédiction associée à l'échantillon :")
st.write(f"La classe prédite est : ----->>    {pred_class}")

pred_proba = model.predict_proba(user_df_prepared)
df_pred_proba = pd.DataFrame(pred_proba,columns=target_names)
st.subheader("Probabilités de prédire chaque classe selon l'échantillon :")
st.write(df_pred_proba)