Spaces:
Sleeping
Sleeping
File size: 6,195 Bytes
f6cb372 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
WORD_PROBABILITY_THRESHOLD = 0.02
#WORD_PROBABILITY_THRESHOLD_ENGLISH = 0.02
#WORD_PROBABILITY_THRESHOLD_CHINESE = 0.02
TOP_K_WORDS = 10
ENGLISH_LANG = "English"
CHINESE_LANG = "Chinese"
CHINESE_WORDLIST = ['一定','一样','不得了','主观','从此','便于','俗话','倒霉','候选','充沛','分别','反倒','只好','同情','吹捧','咳嗽','围绕','如意','实行','将近','就职','应该','归还','当面','忘记','急忙','恢复','悲哀','感冒','成长','截至','打架','把握','报告','抱怨','担保','拒绝','拜访','拥护','拳头','拼搏','损坏','接待','握手','揭发','攀登','显示','普遍','未免','欣赏','正式','比如','流浪','涂抹','深刻','演绎','留念','瞻仰','确保','稍微','立刻','精心','结算','罕见','访问','请示','责怪','起初','转达','辅导','过瘾','运动','连忙','适合','遭受','重叠','镇静']
@st.cache_resource
def get_model_chinese():
return pipeline("fill-mask", MODEL_NAME_CHINESE, device = device)
@st.cache_resource
def get_model_english():
return pipeline("fill-mask", MODEL_NAME_ENGLISH, device = device)
@st.cache_data
def get_wordlist_chinese():
return pd.read_csv('wordlist_chinese.csv')
@st.cache_data
def get_wordlist_english():
return pd.read_csv('wordlist_english.csv')
def assess_chinese(word, sentence):
print("Assessing English")
if sentence.lower().find(word.lower()) == -1:
print('Sentence does not contain the word!')
return
text = sentence.replace(word.lower(), "<mask>")
top_k_prediction = mask_filler_chinese(text, top_k=TOP_K_WORDS)
target_word_prediction = mask_filler_chinese(text, targets = word)
score = target_word_prediction[0]['score']
# append the original word if its not found in the results
top_k_prediction_filtered = [output for output in top_k_prediction if \
output['token_str'] == word]
if len(top_k_prediction_filtered) == 0:
top_k_prediction.extend(target_word_prediction)
return top_k_prediction, score
def assess_english(word, sentence):
if sentence.lower().find(word.lower()) == -1:
raise Exception("Sentence does not contain the target word")
text = sentence.replace(word.lower(), "<mask>")
top_k_prediction = mask_filler_english(text, top_k=TOP_K_WORDS)
target_word_prediction = mask_filler_english(text, targets = chr(9601)+word)
score = target_word_prediction[0]['score']
# append the original word if its not found in the results
top_k_prediction_filtered = [output for output in top_k_prediction if \
output['token_str'] == word]
if len(top_k_prediction_filtered) == 0:
top_k_prediction.extend(target_word_prediction)
return top_k_prediction, score
def assess_sentence(language, word, sentence):
if (language == ENGLISH_LANG):
return assess_english(word, sentence)
elif (language == CHINESE_LANG):
return assess_chinese(word, sentence)
def get_chinese_word():
include = (wordlist_chinese.assess == True) & (wordlist_chinese.Chinese.apply(len) == 2)
possible_words = wordlist_chinese[include]
word = possible_words.sample(1).iloc[0].Chinese
test_words = CHINESE_WORDLIST
word = np.random.choice(test_words)
return word
def get_english_word():
include = (wordlist_english.assess == True)
possible_words = wordlist_english[include]
word = possible_words.sample(1).iloc[0].word
test_words = ["independent","satisfied","excited"]
word = np.random.choice(test_words)
return word
def get_word(language):
if (language == ENGLISH_LANG):
return get_english_word()
elif (language == CHINESE_LANG):
return get_chinese_word()
mask_filler_chinese = get_model_chinese()
mask_filler_english = get_model_english()
wordlist_chinese = get_wordlist_chinese()
wordlist_english = get_wordlist_english()
def highlight_given_word(row):
color = '#ACE5EE' if row.Words == target_word else 'white'
return [f'background-color:{color}'] * len(row)
def get_top_5_results(top_k_prediction):
predictions_df = pd.DataFrame(top_k_prediction)
predictions_df = predictions_df.drop(columns=["token", "sequence"])
predictions_df = predictions_df.rename(columns={"score": "Probability", "token_str": "Words"})
if (predictions_df[:5].Words == target_word).sum() == 0:
print("target word not in top 5")
top_5_df = predictions_df[:5]
target_word_df = predictions_df[(predictions_df.Words == target_word)]
print(target_word_df)
top_5_df = pd.concat([top_5_df, target_word_df])
else:
top_5_df = predictions_df[:5]
top_5_df['Probability'] = top_5_df['Probability'].apply(lambda x: f"{x:.2%}")
return top_5_df
#### Streamlit Page
st.title("造句 Auto-marking Demo")
language = st.radio("Select your language", (ENGLISH_LANG, CHINESE_LANG))
#st.info("You are practising on " + language)
if 'target_word' not in st.session_state:
st.session_state['target_word'] = get_word(language)
target_word = st.session_state['target_word']
st.write("Target word: ", target_word)
if st.button("Get new word"):
st.session_state['target_word'] = get_word(language)
st.experimental_rerun()
st.subheader("Form your sentence and input below!")
sentence = st.text_input('Enter your sentence here', placeholder="Enter your sentence here!")
if st.button("Grade"):
top_k_prediction, score = assess_sentence(language, target_word, sentence)
with open('./result01.json', 'w') as outfile:
outfile.write(str(top_k_prediction))
st.write(f"Probability: {score:.2%}")
st.write(f"Target probability: {WORD_PROBABILITY_THRESHOLD:.2%}")
predictions_df = get_top_5_results(top_k_prediction)
df_style = predictions_df.style.apply(highlight_given_word, axis=1)
if (score >= WORD_PROBABILITY_THRESHOLD):
st.balloons()
st.success("Yay good job! That's a great sentence 🕺 Practice again with other word", icon="✅")
st.table(df_style)
else:
st.warning("Hmmm.. maybe try again?")
st.table(df_style)
|