File size: 2,380 Bytes
60acf32
822d985
5b65c9e
 
 
60acf32
5b65c9e
 
60acf32
 
 
5b65c9e
60acf32
5b65c9e
 
60acf32
 
 
5b65c9e
60acf32
5b65c9e
 
60acf32
 
 
5b65c9e
60acf32
 
5b65c9e
60acf32
5b65c9e
60acf32
 
 
5b65c9e
60acf32
 
5b65c9e
60acf32
5b65c9e
60acf32
 
 
5b65c9e
60acf32
5b65c9e
 
 
 
 
 
 
 
 
9e671c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from scipy import signal


def basic_box_array(image_size, thickness):
    A = np.ones((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    A[1:-1, 1:-1] = 0  # replaces all internal rows/columns with 0's
    A = add_thickness(A, thickness)
    return A


def back_slash_array(image_size, thickness):
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    np.fill_diagonal(A, 1)  # fills the diagonal with 1 values
    A = add_thickness(A, thickness)
    return A


def forward_slash_array(image_size, thickness):
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    np.fill_diagonal(np.fliplr(A), 1)  # Flips the array to then fill the diagonal the opposite direction
    A = add_thickness(A, thickness)
    return A


def hot_dog_array(image_size, thickness):
    # Places pixels down the vertical axis to split the box
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    A[:, np.floor((image_size - 1) / 2).astype(int)] = 1  # accounts for even and odd values of image_size
    A[:, np.ceil((image_size - 1) / 2).astype(int)] = 1
    A = add_thickness(A, thickness)
    return A


def hamburger_array(image_size, thickness):
    # Places pixels across the horizontal axis to split the box
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    A[np.floor((image_size - 1) / 2).astype(int), :] = 1  # accounts for even and odd values of image_size
    A[np.ceil((image_size - 1) / 2).astype(int), :] = 1
    A = add_thickness(A, thickness)
    return A


def add_thickness(array_original, thickness):
    A = array_original
    if thickness == 0:  # want an array of all 0's for thickness = 0
        A[A > 0] = 0
    else:
        filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape
        filter = np.zeros((filter_size, filter_size))
        filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1
        filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1
        convolution = signal.convolve2d(A, filter, mode='same')
        A = np.where(convolution <= 1, convolution, 1)
    return A