File size: 10,346 Bytes
76d3fa1
1880ac6
 
 
 
76d3fa1
3ce130a
1880ac6
 
 
 
 
 
76d3fa1
1880ac6
76d3fa1
1880ac6
76d3fa1
 
33a0edf
 
 
 
 
 
1880ac6
 
33a0edf
 
 
 
 
 
1880ac6
 
33a0edf
1880ac6
 
 
33a0edf
 
76d3fa1
3ce130a
33a0edf
 
 
 
 
1880ac6
 
 
 
 
 
 
 
 
33a0edf
 
76d3fa1
 
 
1880ac6
 
 
76d3fa1
 
2600030
76d3fa1
1880ac6
76d3fa1
1880ac6
76d3fa1
1880ac6
76d3fa1
 
 
 
6774d89
33a0edf
76d3fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600030
76d3fa1
33a0edf
 
 
1880ac6
 
 
 
 
 
76d3fa1
 
 
 
 
2600030
76d3fa1
2600030
76d3fa1
 
 
 
 
 
2600030
76d3fa1
47a5c6c
76d3fa1
 
 
 
33a0edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d3fa1
 
3ce130a
6774d89
 
 
 
 
 
 
 
1880ac6
6774d89
3ce130a
1880ac6
3ce130a
1880ac6
 
 
6774d89
 
 
 
 
 
 
1880ac6
6774d89
 
 
 
76d3fa1
1880ac6
6774d89
33a0edf
 
1880ac6
33a0edf
 
 
 
 
 
 
 
 
 
 
 
1880ac6
33a0edf
1880ac6
 
 
33a0edf
 
 
 
 
 
 
1880ac6
33a0edf
 
1880ac6
 
 
33a0edf
 
76d3fa1
 
33a0edf
1880ac6
 
 
33a0edf
1880ac6
76d3fa1
 
 
 
 
 
 
 
 
3ce130a
1880ac6
 
3ce130a
76d3fa1
 
 
 
 
 
 
 
 
 
 
 
 
33a0edf
76d3fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
from dataclasses import dataclass
from uuid import uuid4

import gradio as gr
import torch
import transformers
from peft import PeftConfig, PeftModel
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)

from utils import Agent, format_sotopia_prompt, get_starter_prompt

DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"


def prepare_sotopia_info():
    human_agent = Agent(
        name="Ethan Johnson",
        background="Ethan Johnson is a 34-year-old male chef. He/him pronouns. Ethan Johnson is famous for cooking Italian food.",
        goal="Uknown",
        secrets="Uknown",
        personality="Ethan Johnson, a creative yet somewhat reserved individual, values power and fairness. He likes to analyse situations before deciding.",
    )

    machine_agent = Agent(
        name="Benjamin Jackson",
        background="Benjamin Jackson is a 24-year-old male environmental activist. He/him pronouns. Benjamin Jackson is well-known for his impassioned speeches.",
        goal="Figure out why they estranged you recently, and maintain the existing friendship (Extra information: you notice that your friend has been intentionally avoiding you, you would like to figure out why. You value your friendship with the friend and don't want to lose it.)",
        secrets="Descendant of a wealthy oil tycoon, rejects family fortune",
        personality="Benjamin Jackson, expressive and imaginative, leans towards self-direction and liberty. His decisions aim for societal betterment.",
    )

    scenario = (
        "Conversation between two friends, where one is upset and crying"
    )
    instructions = get_starter_prompt(machine_agent, human_agent, scenario)
    return human_agent, machine_agent, scenario, instructions


def prepare():
    model_name = "cmu-lti/sotopia-pi-mistral-7b-BC_SR"
    compute_type = torch.float16
    config_dict = PeftConfig.from_json_file("peft_config.json")
    config = PeftConfig.from_peft_type(**config_dict)
    tokenizer = AutoTokenizer.from_pretrained(
        "mistralai/Mistral-7B-Instruct-v0.1"
    )
    model = AutoModelForCausalLM.from_pretrained(
        "mistralai/Mistral-7B-Instruct-v0.1"
    ).to("cuda")
    model = PeftModel.from_pretrained(model, model_name, config=config).to(
        "cuda"
    )
    return model, tokenizer


def introduction():
    with gr.Column(scale=2):
        gr.Image(
            "images/sotopia.jpg", elem_id="banner-image", show_label=False
        )
    with gr.Column(scale=5):
        gr.Markdown(
            """# Sotopia-Pi Demo
            **Chat with [Sotopia-Pi](https://github.com/sotopia-lab/sotopia-pi), brainstorm ideas, discuss your holiday plans, and more!**

            ➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [sotopia-pi-mistral-7b-BC_SR](https://huggingface.co/cmu-lti/sotopia-pi-mistral-7b-BC_SR)/

            ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.

            🗄️ **Disclaimer**: User prompts and generated replies from the model may be collected by TII solely for the purpose of enhancing and refining our models. TII will not store any personally identifiable information associated with your inputs. By using this demo, users implicitly agree to these terms.
            """
        )


def param_accordion(according_visible=True):
    with gr.Accordion("Parameters", open=False, visible=according_visible):
        temperature = gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.7,
            step=0.1,
            interactive=True,
            label="Temperature",
        )
        max_tokens = gr.Slider(
            minimum=1024,
            maximum=4096,
            value=1024,
            step=1,
            interactive=True,
            label="Max Tokens",
        )
        session_id = gr.Textbox(
            value=uuid4,
            interactive=False,
            visible=False,
            label="Session ID",
        )
    return temperature, session_id, max_tokens


def sotopia_info_accordion(
    human_agent, machine_agent, scenario, according_visible=True
):
    with gr.Accordion(
        "Sotopia Information", open=False, visible=according_visible
    ):
        with gr.Row():
            with gr.Column():
                user_name = gr.Textbox(
                    lines=1,
                    label="username",
                    value=human_agent.name,
                    interactive=True,
                    placeholder=f"{human_agent.name}: ",
                    show_label=False,
                    max_lines=1,
                )
            with gr.Column():
                bot_name = gr.Textbox(
                    lines=1,
                    value=machine_agent.name,
                    interactive=True,
                    placeholder=f"{machine_agent.name}: ",
                    show_label=False,
                    max_lines=1,
                    visible=False,
                )
            with gr.Column():
                scenario = gr.Textbox(
                    lines=4,
                    value=scenario,
                    interactive=False,
                    placeholder="Scenario",
                    show_label=False,
                    max_lines=4,
                    visible=False,
                )
    return user_name, bot_name, scenario


def instructions_accordion(instructions, according_visible=False):
    with gr.Accordion("Instructions", open=False, visible=according_visible):
        instructions = gr.Textbox(
            lines=10,
            value=instructions,
            interactive=False,
            placeholder="Instructions",
            show_label=False,
            max_lines=10,
            visible=False,
        )
    return instructions


# history are input output pairs
def run_chat(
    message: str,
    history,
    instructions: str,
    user_name: str,
    bot_name: str,
    temperature: float,
    top_p: float,
    max_tokens: int,
):
    prompt = format_sotopia_prompt(
        message, history, instructions, user_name, bot_name
    )
    input_tokens = tokenizer(
        prompt, return_tensors="pt", padding="do_not_pad"
    ).input_ids.to("cuda")
    input_length = input_tokens.shape[-1]
    output_tokens = model.generate(
        input_tokens,
        temperature=temperature,
        top_p=top_p,
        max_length=max_tokens,
        pad_token_id=tokenizer.eos_token_id,
        num_return_sequences=1,
    )
    output_tokens = output_tokens[:, input_length:]
    text_output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
    return text_output


def chat_tab():
    model, tokenizer = prepare()
    human_agent, machine_agent, scenario, instructions = prepare_sotopia_info()

    # history are input output pairs
    def run_chat(
        message: str,
        history,
        instructions: str,
        user_name: str,
        bot_name: str,
        temperature: float,
        top_p: float,
        max_tokens: int,
    ):
        prompt = format_sotopia_prompt(
            message, history, instructions, user_name, bot_name
        )
        input_tokens = tokenizer(
            prompt, return_tensors="pt", padding="do_not_pad"
        ).input_ids.to("cuda")
        input_length = input_tokens.shape[-1]
        output_tokens = model.generate(
            input_tokens,
            temperature=temperature,
            top_p=top_p,
            max_length=max_tokens,
            pad_token_id=tokenizer.eos_token_id,
            num_return_sequences=1,
        )
        output_tokens = output_tokens[:, input_length:]
        text_output = tokenizer.decode(
            output_tokens[0], skip_special_tokens=True
        )
        return text_output

    with gr.Column():
        with gr.Row():
            temperature, session_id, max_tokens = param_accordion()
            user_name, bot_name, scenario = sotopia_info_accordion(
                human_agent, machine_agent, scenario
            )
            instructions = instructions_accordion(instructions)

        with gr.Column():
            with gr.Blocks():
                gr.ChatInterface(
                    fn=run_chat,
                    chatbot=gr.Chatbot(
                        height=620,
                        render=False,
                        show_label=False,
                        rtl=False,
                        avatar_images=(
                            "images/profile1.jpg",
                            "images/profile2.jpg",
                        ),
                    ),
                    textbox=gr.Textbox(
                        placeholder="Write your message here...",
                        render=False,
                        scale=7,
                        rtl=False,
                    ),
                    additional_inputs=[
                        instructions,
                        user_name,
                        bot_name,
                        temperature,
                        session_id,
                        max_tokens,
                    ],
                    submit_btn="Send",
                    stop_btn="Stop",
                    retry_btn="🔄 Retry",
                    undo_btn="↩️ Delete",
                    clear_btn="🗑️ Clear",
                )


def main():
    with gr.Blocks(
        css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
               #chatbot {height: 600px; overflow: auto;}
               #create_container {height: 750px; margin-left: 0px; margin-right: 0px;}
               #tokenizer_renderer span {white-space: pre-wrap}
               """
    ) as demo:
        with gr.Row():
            introduction()
        with gr.Row():
            chat_tab()

    return demo


def start_demo():
    demo = main()
    if DEPLOYED:
        demo.queue(api_open=False).launch(show_api=False)
    else:
        demo.queue()
        demo.launch(share=False, server_name="0.0.0.0")


if __name__ == "__main__":
    start_demo()