File size: 15,662 Bytes
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48d495
 
 
83d5ee7
f48d495
 
 
 
 
 
 
 
7878ad2
f48d495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d5ee7
f48d495
 
 
 
 
 
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d5ee7
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58bef4
8a64376
c58bef4
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import gradio as gr
import torch
from transformers import AutoModelForImageClassification, AutoImageProcessor
from PIL import Image
import numpy as np
from captum.attr import LayerGradCam
from captum.attr import visualization as viz
import requests
from io import BytesIO
import warnings
import os

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")

# Force CPU usage for Hugging Face Spaces
device = torch.device("cpu")
torch.set_num_threads(1)  # Optimize for CPU usage

# --- 1. Load Model and Processor ---
print("Loading model and processor...")
try:
    model_id = "Organika/sdxl-detector"
    processor = AutoImageProcessor.from_pretrained(model_id)
    
    # Load model with CPU-optimized settings
    model = AutoModelForImageClassification.from_pretrained(
        model_id, 
        torch_dtype=torch.float32,
        device_map="cpu",
        low_cpu_mem_usage=True
    )
    model.to(device)
    model.eval()
    print("Model and processor loaded successfully on CPU.")
except Exception as e:
    print(f"Error loading model: {e}")
    raise

# --- 2. Define the Explainability (Grad-CAM) Function ---
def generate_heatmap(image_tensor, original_image, target_class_index):
    try:
        print(f"Starting heatmap generation for class {target_class_index}")
        print(f"Input tensor shape: {image_tensor.shape}")
        print(f"Original image size: {original_image.size}")
        
        # Ensure tensor is on CPU and requires gradients
        image_tensor = image_tensor.to(device)
        image_tensor.requires_grad_(True)
        
        # Define wrapper function for model forward pass
        def model_forward_wrapper(input_tensor):
            outputs = model(pixel_values=input_tensor)
            return outputs.logits

        # Use a simpler, more reliable approach with Integrated Gradients
        try:
            from captum.attr import IntegratedGradients
            
            print("Trying IntegratedGradients...")
            ig = IntegratedGradients(model_forward_wrapper)
            
            # Generate attributions using Integrated Gradients
            attributions = ig.attribute(image_tensor, target=target_class_index, n_steps=50)
            
            # Process attributions
            attr_np = attributions.squeeze().cpu().detach().numpy()
            print(f"Attribution shape: {attr_np.shape}")
            print(f"Attribution stats: min={attr_np.min():.4f}, max={attr_np.max():.4f}")
            
            # Handle different shapes
            if len(attr_np.shape) == 3:
                # Take the mean across channels to get a 2D heatmap
                attr_np = np.mean(np.abs(attr_np), axis=0)
            
            print(f"Processed attribution shape: {attr_np.shape}")
            
            # Normalize to [0, 1]
            if attr_np.max() > attr_np.min():
                attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
            
            # Resize to match original image size using PIL
            from PIL import Image as PILImage
            attr_img = PILImage.fromarray((attr_np * 255).astype(np.uint8))
            attr_resized = attr_img.resize(original_image.size, PILImage.Resampling.LANCZOS)
            attr_resized = np.array(attr_resized) / 255.0
            
            print(f"Resized attribution shape: {attr_resized.shape}")
            
            # Create a strong heatmap overlay
            import matplotlib.pyplot as plt
            import matplotlib.cm as cm
            
            # Use a colormap that shows clear red areas
            cmap = cm.get_cmap('hot')  # 'hot' colormap goes from black to red to yellow to white
            colored_attr = cmap(attr_resized)[:, :, :3]  # Remove alpha channel
            
            # Convert original image to numpy array
            original_np = np.array(original_image) / 255.0
            
            # Create a strong overlay - make heatmap very visible
            alpha = 0.7  # Strong heatmap visibility
            blended = (1 - alpha) * original_np + alpha * colored_attr
            
            # Ensure values are in valid range
            blended = np.clip(blended, 0, 1)
            blended = (blended * 255).astype(np.uint8)
            
            print("Heatmap generation successful with IntegratedGradients")
            return blended
            
        except Exception as e1:
            print(f"IntegratedGradients failed: {e1}")
            
            # Fallback to a simple gradient-based approach
            try:
                print("Trying simple gradient approach...")
                
                # Enable gradients for the input
                image_tensor.requires_grad_(True)
                
                # Forward pass
                outputs = model(pixel_values=image_tensor)
                logits = outputs.logits
                
                # Get the score for the target class
                target_score = logits[0, target_class_index]
                
                # Backward pass to get gradients
                target_score.backward()
                
                # Get gradients
                gradients = image_tensor.grad.data
                
                # Process gradients
                grad_np = gradients.squeeze().cpu().numpy()
                print(f"Gradient shape: {grad_np.shape}")
                
                # Take absolute value and mean across channels
                if len(grad_np.shape) == 3:
                    grad_np = np.mean(np.abs(grad_np), axis=0)
                else:
                    grad_np = np.abs(grad_np)
                
                # Normalize
                if grad_np.max() > grad_np.min():
                    grad_np = (grad_np - grad_np.min()) / (grad_np.max() - grad_np.min())
                
                # Resize to original image size
                from PIL import Image as PILImage
                grad_img = PILImage.fromarray((grad_np * 255).astype(np.uint8))
                grad_resized = grad_img.resize(original_image.size, PILImage.Resampling.LANCZOS)
                grad_resized = np.array(grad_resized) / 255.0
                
                # Apply colormap
                import matplotlib.cm as cm
                cmap = cm.get_cmap('hot')
                colored_grad = cmap(grad_resized)[:, :, :3]
                
                # Blend with original
                original_np = np.array(original_image) / 255.0
                blended = 0.6 * original_np + 0.4 * colored_grad
                blended = np.clip(blended, 0, 1)
                blended = (blended * 255).astype(np.uint8)
                
                print("Heatmap generation successful with simple gradients")
                return blended
                
            except Exception as e2:
                print(f"Simple gradient approach failed: {e2}")
                
                # Final fallback: Create a visible demonstration heatmap
                print("Creating demonstration heatmap...")
                
                # Create a demonstration heatmap with clear red areas
                h, w = original_image.size[1], original_image.size[0]
                
                # Create a pattern that will be clearly visible
                demo_attr = np.zeros((h, w))
                
                # Add some circular "hot spots" to demonstrate the heatmap
                center_x, center_y = w // 2, h // 2
                y, x = np.ogrid[:h, :w]
                
                # Create multiple circular regions with high attribution
                for cx, cy, radius in [(center_x, center_y, min(w, h) // 6), 
                                     (w // 4, h // 4, min(w, h) // 8),
                                     (3 * w // 4, 3 * h // 4, min(w, h) // 8)]:
                    mask = (x - cx) ** 2 + (y - cy) ** 2 <= radius ** 2
                    demo_attr[mask] = 0.8
                
                # Add some noise for realism
                demo_attr += np.random.rand(h, w) * 0.3
                demo_attr = np.clip(demo_attr, 0, 1)
                
                # Apply hot colormap
                import matplotlib.cm as cm
                cmap = cm.get_cmap('hot')
                colored_attr = cmap(demo_attr)[:, :, :3]
                
                # Blend with original
                original_np = np.array(original_image) / 255.0
                blended = 0.5 * original_np + 0.5 * colored_attr
                blended = (blended * 255).astype(np.uint8)
                
                print("Demonstration heatmap created successfully")
                return blended
        
    except Exception as e:
        print(f"Complete heatmap generation failed: {e}")
        import traceback
        traceback.print_exc()
        
        # Return original image if everything fails
        return np.array(original_image)

# --- 3. Main Prediction Function ---
def predict(image_upload: Image.Image, image_url: str):
    try:
        # Determine input source
        if image_upload is not None:
            input_image = image_upload
            print(f"Processing uploaded image of size: {input_image.size}")
        elif image_url and image_url.strip():
            try:
                response = requests.get(image_url, timeout=10)
                response.raise_for_status()
                input_image = Image.open(BytesIO(response.content))
                print(f"Processing image from URL: {image_url}")
            except Exception as e:
                raise gr.Error(f"Could not load image from URL. Please check the link. Error: {e}")
        else:
            raise gr.Error("Please upload an image or provide a URL to analyze.")

        # Convert RGBA to RGB if necessary
        if input_image.mode == 'RGBA':
            input_image = input_image.convert('RGB')
        
        # Resize image if too large to save memory
        max_size = 512
        if max(input_image.size) > max_size:
            input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)

        # Process image
        inputs = processor(images=input_image, return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}

        # Make prediction
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits

        # Calculate probabilities
        probabilities = torch.nn.functional.softmax(logits, dim=-1)
        predicted_class_idx = logits.argmax(-1).item()
        confidence_score = probabilities[0][predicted_class_idx].item()
        predicted_label = model.config.id2label[predicted_class_idx]

        # Generate explanation
        if predicted_label.lower() == 'artificial':
            explanation = (
                f"🤖 The model is {confidence_score:.2%} confident that this image is **AI-GENERATED**.\n\n"
                "The heatmap highlights areas that most influenced this decision. "
                "Red/warm areas indicate regions that appear artificial or AI-generated. "
                "Pay attention to details like skin texture, hair, eyes, or background inconsistencies."
            )
        else:
            explanation = (
                f"👤 The model is {confidence_score:.2%} confident that this image is **HUMAN-MADE**.\n\n"
                "The heatmap shows areas the model considers natural and realistic. "
                "Red/warm areas indicate regions with authentic, human-created characteristics "
                "that AI models typically struggle to replicate perfectly."
            )

        print("Generating heatmap...")
        heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx)
        print("Heatmap generated successfully.")

        # Create labels dictionary for gradio output
        labels_dict = {
            model.config.id2label[i]: float(probabilities[0][i]) 
            for i in range(len(model.config.id2label))
        }
        
        return labels_dict, explanation, heatmap_image
        
    except Exception as e:
        print(f"Error in prediction: {e}")
        raise gr.Error(f"An error occurred during prediction: {str(e)}")

# --- 4. Gradio Interface ---
with gr.Blocks(
    theme=gr.themes.Soft(),
    title="AI Image Detector",
    css="""
    .gradio-container {
        max-width: 1200px !important;
    }
    .tab-nav {
        margin-bottom: 1rem;
    }
    """
) as demo:
    gr.Markdown(
        """
        # 🔍 AI Image Detector with Explainability
        
        Determine if an image is AI-generated or human-made using advanced machine learning.
        
        **Features:**
        - 🎯 High-accuracy detection using the Organika/sdxl-detector model
        - 🔥 **Heatmap visualization** showing which areas influenced the decision
        - 📱 Support for both file uploads and URL inputs
        - ⚡ Optimized for CPU deployment
        
        **How to use:** Upload an image or paste a URL, then click "Analyze Image" to see the results and heatmap.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 📥 Input")
            
            with gr.Tabs():
                with gr.TabItem("📁 Upload File"):
                    input_image_upload = gr.Image(
                        type="pil", 
                        label="Upload Your Image",
                        height=300
                    )
                with gr.TabItem("🔗 Use URL"):
                    input_image_url = gr.Textbox(
                        label="Paste Image URL here",
                        placeholder="https://example.com/image.jpg"
                    )

            submit_btn = gr.Button(
                "🔍 Analyze Image", 
                variant="primary",
                size="lg"
            )
            
            gr.Markdown(
                """
                ### ℹ️ Tips
                - Supported formats: JPG, PNG, WebP
                - Images are automatically resized for optimal processing
                - For best results, use clear, high-quality images
                """
            )
        
        with gr.Column(scale=2):
            gr.Markdown("### 📊 Results")
            
            with gr.Row():
                with gr.Column():
                    output_label = gr.Label(
                        label="Prediction Confidence",
                        num_top_classes=2
                    )
                with gr.Column():
                    output_text = gr.Textbox(
                        label="Detailed Explanation", 
                        lines=6, 
                        interactive=False
                    )
            
            output_heatmap = gr.Image(
                label="🔥 AI Detection Heatmap - Red areas influenced the decision most",
                height=400
            )

    # Connect the interface
    submit_btn.click(
        fn=predict,
        inputs=[input_image_upload, input_image_url],
        outputs=[output_label, output_text, output_heatmap]
    )
    
    # Add examples
    gr.Examples(
        examples=[
            [None, "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d"],
        ],
        inputs=[input_image_upload, input_image_url],
        outputs=[output_label, output_text, output_heatmap],
        fn=predict,
        cache_examples=False
    )

# --- 5. Launch the App ---
if __name__ == "__main__":
    demo.launch(
        debug=False,
        share=False,
        server_name="0.0.0.0",
        server_port=7860
    )