Spaces:
Running
Running
File size: 17,992 Bytes
69dfe66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from configuration_hybrid_clip import HybridCLIPConfig
from flax.core.frozen_dict import FrozenDict
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
from transformers.modeling_flax_utils import FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput
from transformers.utils import logging
logger = logging.get_logger(__name__)
class FlaxHybridCLIPModule(nn.Module):
config: HybridCLIPConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
text_config = self.config.text_config
vision_config = self.config.vision_config
self.projection_dim = self.config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class
self.text_model = text_module(text_config, dtype=self.dtype)
self.vision_model = vision_module(vision_config, dtype=self.dtype)
self.visual_projection = nn.Dense(
self.projection_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
use_bias=False,
)
self.text_projection = nn.Dense(
self.projection_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
use_bias=False,
)
self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, [])
def __call__(
self,
input_ids=None,
pixel_values=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = jnp.exp(self.logit_scale)
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
logits_per_image = logits_per_text.T
if not return_dict:
return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return FlaxCLIPOutput(
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
class FlaxHybridCLIP(FlaxPreTrainedModel):
config_class = HybridCLIPConfig
module_class = FlaxHybridCLIPModule
def __init__(
self,
config: HybridCLIPConfig,
input_shape: Optional[Tuple] = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
**kwargs
):
if input_shape is None:
input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
# init input tensor
input_ids = jnp.zeros(input_shape[0], dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
token_type_ids = jnp.ones_like(input_ids)
attention_mask = jnp.ones_like(input_ids)
pixel_values = jax.random.normal(rng, input_shape[1])
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
return self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)["params"]
def __call__(
self,
input_ids,
pixel_values,
attention_mask=None,
position_ids=None,
token_type_ids=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(pixel_values, dtype=jnp.float32),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
def get_text_features(
self,
input_ids,
attention_mask=None,
position_ids=None,
token_type_ids=None,
dropout_rng: jax.random.PRNGKey = None,
train=False,
):
r"""
Args:
input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
Returns:
text_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The text embeddings
obtained by applying the projection layer to the pooled output of text model.
"""
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic):
text_outputs = module.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
deterministic=deterministic,
)
pooled_output = text_outputs[1]
text_features = module.text_projection(pooled_output)
return text_features
return self.module.apply(
{"params": self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
not train,
method=_get_features,
rngs=rngs,
)
def get_image_features(self, pixel_values, dropout_rng: jax.random.PRNGKey = None, train=False):
r"""
Args:
pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
using :class:`~transformers.ImageFeatureExtractionMixin`. See
:meth:`transformers.ImageFeatureExtractionMixin.__call__` for details.
Returns:
image_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The image embeddings
obtained by applying the projection layer to the pooled output of vision model.
"""
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _get_features(module, pixel_values, deterministic):
vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
pooled_output = vision_outputs[1] # pooled_output
image_features = module.visual_projection(pooled_output)
return image_features
return self.module.apply(
{"params": self.params},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
method=_get_features,
rngs=rngs,
)
@classmethod
def from_text_vision_pretrained(
cls,
text_model_name_or_path: str = None,
vision_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> FlaxPreTrainedModel:
"""
Params:
text_model_name_or_path (:obj: `str`, `optional`):
Information necessary to initiate the text model. Can be either:
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
a user or organization name, like ``dbmdz/bert-base-german-cased``.
- A path to a `directory` containing model weights saved using
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`):
Information necessary to initiate the vision model. Can be either:
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
a user or organization name, like ``dbmdz/bert-base-german-cased``.
- A path to a `directory` containing model weights saved using
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
model_args (remaining positional arguments, `optional`):
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
kwargs (remaining dictionary of keyword arguments, `optional`):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
:obj:`output_attentions=True`).
- To update the text configuration, use the prefix `text_` for each configuration parameter.
- To update the vision configuration, use the prefix `vision_` for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a :obj:`config` is provided or automatically loaded.
Example::
>>> from transformers import FlaxHybridCLIP
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
>>> model = FlaxHybridCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert-clip")
>>> # load fine-tuned model
>>> model = FlaxHybridCLIP.from_pretrained("./bert-clip")
"""
kwargs_text = {
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
}
kwargs_vision = {
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
}
# remove text, vision kwargs from kwargs
for key in kwargs_text.keys():
del kwargs["text_" + key]
for key in kwargs_vision.keys():
del kwargs["vision_" + key]
# Load and initialize the text and vision model
text_model = kwargs_text.pop("model", None)
if text_model is None:
assert (
text_model_name_or_path is not None
), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
from transformers import FlaxAutoModel
if "config" not in kwargs_text:
from transformers import AutoConfig
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
kwargs_text["config"] = text_config
text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
vision_model = kwargs_vision.pop("model", None)
if vision_model is None:
assert (
vision_model_name_or_path is not None
), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
from transformers import FlaxAutoModel
if "config" not in kwargs_vision:
from transformers import AutoConfig
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
kwargs_vision["config"] = vision_config
vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
# instantiate config with corresponding kwargs
dtype = kwargs.pop("dtype", jnp.float32)
config = HybridCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs)
# init model
model = cls(config, *model_args, dtype=dtype, **kwargs)
if vision_config.model_type == "clip":
model.params["vision_model"]["vision_model"] = vision_model.params["vision_model"]
model.params["visual_projection"]["kernel"] = vision_model.params["visual_projection"]["kernel"]
else:
model.params["vision_model"] = vision_model.params
model.params["text_model"] = text_model.params
return model
|