Spaces:
Runtime error
Runtime error
File size: 3,662 Bytes
a0497a5 3aae85b b8e8c93 82d6c9a 3aae85b b8e8c93 3aae85b b8e8c93 a0497a5 3aae85b a0497a5 82d6c9a a0497a5 82d6c9a 3aae85b 82d6c9a b8e8c93 a0497a5 3aae85b a0497a5 b8e8c93 a0497a5 3aae85b a0497a5 b8e8c93 a0497a5 3aae85b a0497a5 b8e8c93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
import pandas as pd
dataframe = pd.read_csv('data/general.csv')
NUM_DATASETS = 7
NUM_SCORES = 0
NUM_MODELS = len(dataframe)
def general_dataframe_update():
"""
Returns general dataframe for general table.
"""
dataframe = pd.read_csv('data/general.csv')
return dataframe
def classification_dataframe_update():
"""
Returns classification dataframe for classification table.
"""
dataframe = pd.read_csv('data/classification.csv')
return dataframe
def sts_dataframe_udpate():
"""
Returns sts dataframe for sts table.
"""
dataframe = pd.read_csv('data/sts.csv')
return dataframe
def clustering_dataframe_update():
pass
def retrieval_dataframe_update():
pass
block = gr.Blocks()
with block:
gr.Markdown(f"""**Leaderboard de modelos de Embeddings en español
Massive Text Embedding Benchmark (MTEB) Leaderboard.**
- **Total Datasets**: {NUM_DATASETS}
- **Total Languages**: 1
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
""")
with gr.Tabs():
with gr.TabItem("Overall"):
with gr.Row():
gr.Markdown("""
**Tabla General de Embeddings**
- **Métricas:** Varias, con sus respectivas medias.
- **Idioma:** Español
""")
with gr.Row():
overall = general_dataframe_update()
data_overall = gr.components.Dataframe(
overall,
type="pandas",
wrap=True,
)
with gr.TabItem("Classification"):
with gr.Row():
gr.Markdown("""
**Tabla Classification de Embeddings**
- **Métricas:** Spearman correlation based on cosine similarity.
- **Idioma:** Español
""")
with gr.Row():
# Create and display a sample DataFrame
classification = classification_dataframe_update()
data_overall = gr.components.Dataframe(
classification,
type="pandas",
wrap=True,
)
with gr.TabItem("STS"):
with gr.Row():
gr.Markdown("""
**Tabla Classification de Embeddings**
- **Metricas:** .
- **Idioma:** Español
""")
with gr.Row():
# Create and display a sample DataFrame
sts = sts_dataframe_udpate()
data_overall = gr.components.Dataframe(
sts,
type="pandas",
wrap=True,
)
with gr.TabItem("Clustering"):
with gr.Row():
# Create and display a sample DataFrame
sts = clustering_dataframe_update()
data_overall = gr.components.Dataframe(
sts,
type="pandas",
wrap=True,
)
with gr.TabItem("Retrieval"):
with gr.Row():
# Create and display a sample DataFrame
sts = retrieval_dataframe_update()
data_overall = gr.components.Dataframe(
sts,
type="pandas",
wrap=True,
)
block.launch()
|