File size: 3,662 Bytes
a0497a5
 
 
3aae85b
 
b8e8c93
82d6c9a
3aae85b
b8e8c93
 
 
 
 
 
 
 
 
 
 
 
 
 
3aae85b
b8e8c93
 
 
 
 
 
a0497a5
3aae85b
 
 
 
 
 
 
a0497a5
82d6c9a
 
 
 
 
 
 
a0497a5
 
 
82d6c9a
 
 
3aae85b
82d6c9a
 
 
b8e8c93
a0497a5
 
 
 
 
 
3aae85b
 
 
 
 
 
 
a0497a5
 
b8e8c93
a0497a5
 
 
 
 
 
3aae85b
 
 
 
 
 
 
a0497a5
 
b8e8c93
a0497a5
 
 
 
 
3aae85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0497a5
 
b8e8c93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
import pandas as pd

dataframe = pd.read_csv('data/general.csv')

NUM_DATASETS = 7
NUM_SCORES = 0
NUM_MODELS = len(dataframe)

def general_dataframe_update():
    """
    Returns general dataframe for general table. 
    """
    dataframe = pd.read_csv('data/general.csv')
    return dataframe

def classification_dataframe_update():
    """
    Returns classification dataframe for classification table. 
    """
    dataframe = pd.read_csv('data/classification.csv')
    return dataframe

def sts_dataframe_udpate():
    """
    Returns sts dataframe for sts table. 
    """
    dataframe = pd.read_csv('data/sts.csv')
    return dataframe

def clustering_dataframe_update():
    pass

def retrieval_dataframe_update():
    pass

block = gr.Blocks()
with block:
    gr.Markdown(f"""**Leaderboard de modelos de Embeddings en español
    Massive Text Embedding Benchmark (MTEB) Leaderboard.**
    - **Total Datasets**: {NUM_DATASETS}
    - **Total Languages**: 1
    - **Total Scores**: {NUM_SCORES}
    - **Total Models**: {NUM_MODELS}
    """)
    with gr.Tabs():
        with gr.TabItem("Overall"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla General de Embeddings**
                    
                    - **Métricas:** Varias, con sus respectivas medias.
                    - **Idioma:** Español
                    """)
            with gr.Row():
                overall = general_dataframe_update()
                data_overall = gr.components.Dataframe(
                        overall,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("Classification"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla Classification de Embeddings**
                    
                    - **Métricas:** Spearman correlation based on cosine similarity.
                    - **Idioma:** Español
                    """)
            with gr.Row():
                # Create and display a sample DataFrame
                classification = classification_dataframe_update()
                data_overall = gr.components.Dataframe(
                        classification,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("STS"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla Classification de Embeddings**
                    
                    - **Metricas:** .
                    - **Idioma:** Español
                    """)
            with gr.Row():
                # Create and display a sample DataFrame
                sts = sts_dataframe_udpate()
                data_overall = gr.components.Dataframe(
                        sts,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("Clustering"):
            with gr.Row():
                # Create and display a sample DataFrame
                sts = clustering_dataframe_update()
                data_overall = gr.components.Dataframe(
                        sts,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("Retrieval"):
            with gr.Row():
                # Create and display a sample DataFrame
                sts = retrieval_dataframe_update()
                data_overall = gr.components.Dataframe(
                        sts,
                        type="pandas",
                        wrap=True,
                    )

block.launch()