File size: 3,510 Bytes
a37f34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85421d6
a37f34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import random
import time
import pymongo
import certifi
import os
from dotenv import load_dotenv


import argparse
from dataclasses import dataclass
from langchain.vectorstores.chroma import Chroma
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_openai.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate

from deep_translator import GoogleTranslator

uri = "mongodb+srv://clementrof:t5fXqwpDQYFpvuCk@cluster0.rl5qhcj.mongodb.net/?retryWrites=true&w=majority"

# Create a new client and connect to the server
client = pymongo.MongoClient(uri, tlsCAFile=certifi.where())

# Send a ping to confirm a successful connection
try:
    client.admin.command('ping')
    print("Pinged your deployment. You successfully connected to MongoDB!")
except Exception as e:
    print(e)

# Access your database
db = client.get_database('camila')
records = db.info

# Load environment variables from .env
load_dotenv()

# Access the private key
private_key = os.getenv("OPENAI_API_KEY")
os.environ["OPENAI"] = "OPENAI_API_KEY"

CHROMA_PATH = "ch_chatbot"


####### F R ################
PROMPT_TEMPLATE = """
Réponds à la question en te basant sur le contexte suivant :

{context}

---

Voici l'historique de cette conversation, utilise l'historique comme une mémoire:

{memory}

---

Réponds à la question en se basant sur le contexte ci-dessus et parle de la même manière que le contexte. Ne dis pas que tu utilises le contexte pour répondre : {question}

"""





def message(question,memory):

    # Prepare the DB.
    embedding_function = OpenAIEmbeddings()
    db = Chroma(persist_directory=CHROMA_PATH,
                embedding_function=embedding_function)

    # Search the DB.
    results = db.similarity_search_with_relevance_scores(question, k=3)
    if len(results) == 0 or results[0][1] < 0.7:
        print("Unable to find matching results.")
        return

    context_text = "\n\n---\n\n".join(
        [doc.page_content for doc, _score in results])
    prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
    prompt = prompt_template.format(context=context_text, memory=memory, question=question)
    print(prompt)

    model = ChatOpenAI()
    response_text = model.invoke(prompt)
    content = response_text.content
    return content



def Chat_call(question):
    existing_user_doc = records.find_one({'ID': '1'})

    message_log = []
    messages = existing_user_doc['message']
    if len(messages)>1:
        messages = messages[-1:]

    message_log.extend(messages)
    # Convert each dictionary into a string representation
    message_strings = [f"{message['role']}: {message['content']}" for message in message_log]
    # Join the strings with newline characters
    memory = '\n'.join(message_strings)
            


    response = message(question,memory)


    records.update_one({'ID': '1'}, 
    {'$push':{'message':  {'role': 'user', 'content': f'{question}'}}})
    records.update_one({'ID': '1'}, 
    {'$push':{'message': {'role': 'assistant', 'content': f'{response}'}}})

   
    return response




with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.ClearButton([msg, chatbot])

    def respond(message, chat_history):
        bot_message = Chat_call(message)
        chat_history.append((message, bot_message))
        return "", chat_history

    msg.submit(respond, [msg, chatbot], [msg, chatbot])

if __name__ == "__main__":
    demo.launch()