File size: 7,969 Bytes
963e020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import requests
import time
import requests
import base64




token = '5UAYO8UWHNQKT3UUS9H8V360L76MD72DRIUY9QC2'


    

##############################################################
#################################################

def SD_call(image_prompt, age, color, hair_color):

    serverless_api_id = '3g77weiulabzuk'
    # Define the URL you want to send the request to
    url = f"https://api.runpod.ai/v2/{serverless_api_id}/runsync"

    # Define your custom headers
    headers = {
        "Authorization": f"Bearer {token}",
        "Accept": "application/json",
        "Content-Type": "application/json"
    }
    
    # Define your data (this could also be a JSON payload)
    print("SD_processing")
    data = {
        "input": {
            "api": {
                "method": "POST",
                "endpoint": "/sdapi/v1/txt2img"
            },
            "payload": {
                "override_settings": {
                    "sd_model_checkpoint": "CyberRealistic",
                    "sd_vae": ""
                },
                "override_settings_restore_afterwards": True,
                "refiner_checkpoint": "",
                "refiner_switch_at": 0.8,
                "prompt": f"masterpiece, best quality, 8k, (looking at viewer:1.1), gorgeous, hot, seductive, {age} years old american {color} woman, (eye contact:1.1), beautiful face, hyper detailed, best quality, ultra high res, {hair_color} hair,blue eyes, photorealistic, high resolution, detailed, raw photo, 1girl,{image_prompt} ",
                "negative_prompt": "EasyNegative, fat, paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, ((monochrome)), ((grayscale)), bad anatomy, text, error, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet, poorly drawn face, bad proportions, gross proportions, ng_deepnegative_v1_75t, badhandsv5-neg, clothes",
                "seed": -1,
                "batch_size": 1,
                "steps": 30,
                "cfg_scale": 7,
                "width": 520,
                "height": 520,
                "sampler_name": "DPM++ SDE Karras",
                "sampler_index": "DPM++ SDE Karras",
                "restore_faces": False
            }
        }
    }




    # Send the POST request with headers and data
    response = requests.post(url, headers=headers, json=data)

    # Check the response
    if response.status_code == 200:
        response_data = response.json()
        msg_id = response_data['id']
        print("Message ID:", msg_id)

        # Poll the status until it's not 'IN_QUEUE'
        while response_data['status'] == 'IN_QUEUE':
            time.sleep(5)  # Wait for 5 seconds before checking again
            response = requests.get(f"{url}/{msg_id}", headers=headers)
            
            try:
                response_data = response.json()
            except Exception as e:
                print("Error decoding JSON:", e)
                print("Response content:", response.text)
                break  # Exit the loop on JSON decoding error

        # Check if the response contains images
        if 'images' in response_data.get('output', {}):
            base64_image = response_data['output']['images'][0]
            image_bytes = base64.b64decode(base64_image)
            
            # Save the image to a file
            image_path = f"output_image_{msg_id}.png"
            with open(image_path, "wb") as img_file:
                img_file.write(image_bytes)

            print(f"Image downloaded successfully: {image_path}")
            
            return image_path

        else:
            return "No images found in the response."
            
    else:
        # Print error message
        return f"Error: {response.status_code} - {response.text}"
                        



##############################################################
#################################################



def LLM_call(message_log, temperature):

    serverless_api_id = '4whzcbwuriohqh'
    # Define the URL you want to send the request to
    url = f"https://api.runpod.ai/v2/{serverless_api_id}/run"

    # Define your custom headers
    headers = {
        "Authorization": f"Bearer {token}",
        "Accept": "application/json",
        "Content-Type": "application/json"
    }

       

    # Define your data (this could also be a JSON payload)
    data = {

        "input": {
                "prompt": message_log,
                "max_new_tokens": 4500,
                "temperature": 0.7,
                "top_k": 50,
                "top_p": 0.9,
                "repetition_penalty": 1.2,
                "batch_size": 8,
                "stop": ["</s>"]
            }
    }
   
    


    # Send the POST request with headers and data
    call = requests.post(url, headers=headers, json=data)
    response_data = call.json()
    msg_id = response_data['id']
    print("Message ID:", msg_id)
    output = "Output not available"
    # Poll the API until the response is ready
    while True:
        # Get the status using the message ID
        response = requests.get(f"https://api.runpod.ai/v2/{serverless_api_id}/status/{msg_id}", headers=headers)

        if response.status_code == 200:
            response_data = response.json()
            status = response_data.get('status')

            if status == 'COMPLETED':
                # Access the 'output' directly from the response
                output = response_data.get('output', 'Output not available')
                print("Response content:", output)
                break  # Exit the loop once the response is ready
            elif status == 'FAILED':
                error_message = response_data.get('error', 'Unknown error')
                print("Request failed. Reason:", error_message)
                break  # Exit the loop if the request failed
        else:
            print("Failed to get status. HTTP status code:", response.status_code)

        # Wait for a short time before polling again (e.g., 2 seconds)
        time.sleep(2)
    
    return output





def Chat_call(chat,temperature):
    message_log = [{"role": "assistant", "content": f"I want you to act as a woman named Julie. Use colloquial language. Julie is 25 years old, she is very hot physically, she loves watching football, she loves to talk about sex. Julie loves sex and being fucked. She never refuses anything. You'll answer to a man, call him baby. Write very short answers, 15 words."},]      
    new_message = {"role": "user", "content": chat}
    message_log.append(new_message)
    response = LLM_call(message_log, temperature)
    print("From Runpod:" + response)
    return response




########################################################
#######################################################



def greet(chat, image_prompt, temperature, age, color, hair_color):
    if image_prompt.strip():
        image_path = SD_call(image_prompt,age, color, hair_color)
        return "Image generated successfully", image_path

    if temperature > 3:
        return "You are too warm please try again", None
    else:
        text_answer = Chat_call(chat,temperature)
        return text_answer, None

demo = gr.Interface(
    fn=greet,
    inputs=[
        "text",
        gr.Textbox(label="Image", lines=3),
        gr.Slider(label="Text temperature", value=1, minimum=0, maximum=2),
        gr.Slider(label="Age", value=22, minimum=18, maximum=75),
        gr.Dropdown(["asian", "white", "black", "latina"], label="Color", info="Will add more later!"),
        gr.Dropdown(["blond", "brune", "red", "white", "pink", "black", "blue", "green"], label="Hair color", info="Blond is cool")
    ],
    flagging_options=["blurry", "incorrect", "other"],
    outputs=[gr.Textbox(label="Answer", lines=3), gr.Image(label="Generated Image", type="filepath")],
)

demo.launch(share=True)