Spaces:
Paused
Paused
File size: 3,781 Bytes
699e8ff 460d762 8c49cb6 6254b87 460d762 8c49cb6 460d762 1df8383 460d762 adb0416 6254b87 8c49cb6 699e8ff 8c49cb6 699e8ff 8c49cb6 699e8ff 8c49cb6 adb0416 9e0f1e6 699e8ff 8c49cb6 699e8ff 8c49cb6 699e8ff 8c49cb6 699e8ff ed1fdef 8c49cb6 460d762 ed1fdef adb0416 699e8ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import glob
import json
import os
from typing import List
from huggingface_hub import HfApi
from tqdm import tqdm
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
from src.display_models.utils import AutoEvalColumn, model_hyperlink
api = HfApi(token=os.environ.get("H4_TOKEN", None))
def get_model_metadata(leaderboard_data: List[dict]):
for model_data in tqdm(leaderboard_data):
request_files = os.path.join(
"eval-queue",
model_data["model_name_for_query"] + "_eval_request_*" + ".json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
if len(request_files) == 1:
request_file = request_files[0]
elif len(request_files) > 1:
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] == "FINISHED"
and req_content["precision"] == model_data["Precision"].split(".")[-1]
):
request_file = tmp_request_file
try:
with open(request_file, "r") as f:
request = json.load(f)
model_type = model_type_from_str(request["model_type"])
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol # + ("🔺" if is_delta else "")
model_data[AutoEvalColumn.license.name] = request["license"]
model_data[AutoEvalColumn.likes.name] = request["likes"]
model_data[AutoEvalColumn.params.name] = request["params"]
except Exception:
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA:
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[
model_data["model_name_for_query"]
].value.name
model_data[AutoEvalColumn.model_type_symbol.name] = MODEL_TYPE_METADATA[
model_data["model_name_for_query"]
].value.symbol # + ("🔺" if is_delta else "")
else:
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol
def flag_models(leaderboard_data: List[dict]):
for model_data in leaderboard_data:
if model_data["model_name_for_query"] in FLAGGED_MODELS:
issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1]
issue_link = model_hyperlink(
FLAGGED_MODELS[model_data["model_name_for_query"]],
f"See discussion #{issue_num}",
)
model_data[
AutoEvalColumn.model.name
] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
def remove_forbidden_models(leaderboard_data: List[dict]):
indices_to_remove = []
for ix, model in enumerate(leaderboard_data):
if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
indices_to_remove.append(ix)
for ix in reversed(indices_to_remove):
leaderboard_data.pop(ix)
return leaderboard_data
def apply_metadata(leaderboard_data: List[dict]):
leaderboard_data = remove_forbidden_models(leaderboard_data)
get_model_metadata(leaderboard_data)
flag_models(leaderboard_data)
|