File size: 7,491 Bytes
c06baa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch
import torch.nn as nn
import math

class InputEmbedding(nn.Module):
    def __init__(self, d_model: int, vocab_size: int) -> None:
        super().__init__()
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.embedding = nn.Embedding(self.vocab_size, d_model)
        
    def forward(self, x):
        return self.embedding(x)*math.sqrt(self.d_model)
    
    
class PositionalEncoding(nn.Module):
    def __init__(self, d_model: int, sequence_length: int, dropout: float) -> None:
        super().__init__()
        self.d_model = d_model
        self.sequence_length = sequence_length
        self.dropout = nn.Dropout(dropout)
        
        pe = torch.zeros(sequence_length, d_model)
        position = torch.arange(0, sequence_length, dtype=torch.float).unsqueeze(1)
        
        frequency_term = torch.exp(torch.arange(0, d_model, 2, dtype=torch.float) * (-math.log(10000.0) / d_model))
        
        pe[:, 0::2] = torch.sin(position*frequency_term)
        pe[:, 1::2] = torch.cos(position*frequency_term)
        
        pe = pe.unsqueeze(0) # add batch dimention
        
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        pe = self.pe.detach()  # Detach the positional encoding tensor
        x = x + pe[:, :x.shape[1], :]
        return self.dropout(x)
        
class LayerNormalization(nn.Module):
    def __init__(self, eps: float = 10**-6) -> None:
        super().__init__()
        
        self.eps = eps
        self.alpha = nn.Parameter(torch.ones(1))
        self.beta = nn.Parameter(torch.zeros(1))
        
    def forward(self, x):
        mean = x.mean(dim = -1, keepdim = True)
        std = x.std(dim = -1, keepdim = True)
        return self.alpha*(x - mean)/(std + self.eps) + self.beta
    


class FeedForwardBlock(nn.Module):
    def __init__(self, d_model: int, dff: int, dropout: float):
        super().__init__()
        self.linear_1 = nn.Linear(d_model, dff)
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(dff, d_model)
        
    def forward(self, x):
        return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
    
    
class MultiheadAttentionBlock(nn.Module):
    def __init__(self, d_model: int, num_heads: int, dropout: float):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        
        assert d_model%num_heads == 0, "num heads does not divide d_model"
        self.d_k = d_model // num_heads
        
        self.Wq = nn.Linear(d_model, d_model) # vec to query
        self.Wk = nn.Linear(d_model, d_model) # vec to key
        self.Wv = nn.Linear(d_model, d_model) # vec to value
        
        self.dropout = nn.Dropout(dropout)
        
        self.Wo = nn.Linear(d_model, d_model)
        
        
    @staticmethod
    def attention(query, key, value, dropout: nn.Dropout, mask = None):
        
        # attention matrix
        scores = torch.matmul(query, key.transpose(-2, -1))/math.sqrt(query.shape[-1])
        
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e9)
            
        scores = torch.softmax(scores, dim = -1)
        
        
        if dropout is not None:
            scores = dropout(scores)
        
        return torch.matmul(scores, value), scores # return the output of the head as well as attention matrix for visualization
        

    def forward(self, q, k, v, mask):
        Q = self.Wq(q)
        K = self.Wk(k)
        V = self.Wv(v)
        
        
        # divide the input vectors into different heads
        Q = Q.view(Q.shape[0], Q.shape[1], self.num_heads, self.d_k).transpose(1,2)
        K = K.view(K.shape[0], K.shape[1], self.num_heads, self.d_k).transpose(1,2)
        V = V.view(V.shape[0], V.shape[1], self.num_heads, self.d_k).transpose(1,2)
        
        x, self.attention_scores = MultiheadAttentionBlock.attention(Q, K, V, self.dropout, mask)
        
        # print(f"shapes of attentions: {x.shape[0]} {x.shape[1]} {x.shape[2]} {x.shape[3]}")
        x = x.transpose(1,2).contiguous().view(x.shape[0], -1, self.num_heads*self.d_k)
        
        return self.Wo(x)
        
        
class ResidualConnection(nn.Module):
    
    def __init__(self, dropout: float):
        super().__init__()
        self.norm = LayerNormalization()
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, sublayer):
        return x + self.dropout(sublayer(self.norm(x)))
    

class EncoderBlock(nn.ModuleList):
    def __init__(self, self_attention_block: MultiheadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float):
        super().__init__()
        self.self_attention_block = self_attention_block
        self.feed_forward_block = feed_forward_block
        self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])
        
    def forward(self, x, src_mask):
        x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, src_mask))
        x = self.residual_connections[1](x, lambda x: self.feed_forward_block(x))
        
        return x
    
    
class Encoder(nn.Module):
    def __init__(self, layers: nn.ModuleList) -> None:
        super().__init__()
        self.layers = layers
        self.norm = LayerNormalization()
        
        
    def forward(self, x, src_mask):
        for layer in self.layers:
            x = layer(x, src_mask)
        return self.norm(x)
    
    
class ProjectionLayer(nn.Module):
    def __init__(self, d_model: int, vocab_size: int):
        super().__init__()
        
        self.linear = nn.Linear(d_model, vocab_size)
        
    def forward(self, x):
        return torch.log_softmax(self.linear(x), dim = -1)
    

    
    
class DecoderOnlyTransformer(nn.Module):
    def __init__(self, encoder: Encoder, tgt_embed: InputEmbedding, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer) -> None:
        super().__init__()
        
        self.encoder = encoder
        self.tgt_embed = tgt_embed
        self.tgt_pos = tgt_pos
        self.projection_layer = projection_layer
        
    
    def decode(self, tgt, tgt_mask):
        tgt = self.tgt_embed(tgt)
        tgt = self.tgt_pos(tgt)
        return self.encoder(tgt, tgt_mask)
    
    def project(self, x):
        return self.projection_layer(x)
        
def build_decoder_only_transformer(vocab_size: int, seq_len: int, d_model:int = 512, N:int = 6, h:int = 8, dropout:float = 0.1, dff:int = 2048):
    # embedding layers
    embed = InputEmbedding(d_model, vocab_size)
    
    # positional encodings
    pos = PositionalEncoding(d_model, seq_len, dropout)
    
    encoder_blocks = []
    for _ in range(N):
        encoder_self_attention_block = MultiheadAttentionBlock(d_model, h, dropout)
        feed_fwd_block = FeedForwardBlock(d_model, dff, dropout)
        encoder_block = EncoderBlock(encoder_self_attention_block, feed_fwd_block, dropout)
        encoder_blocks.append(encoder_block)
    
    encoder = Encoder(nn.ModuleList(encoder_blocks))
    
    projection_layer = ProjectionLayer(d_model, vocab_size)
    
    transformer = DecoderOnlyTransformer(encoder, embed, pos, projection_layer)
    
    for p in transformer.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
            
    return transformer