Spaces:
Sleeping
Sleeping
File size: 20,450 Bytes
2c61538 b292837 2c61538 774af64 d60cfb3 2c61538 d60cfb3 2c61538 00a5453 2c61538 00a5453 2c61538 7832369 4776810 7832369 4776810 7832369 2c61538 7832369 d6be8ab 7832369 d6be8ab 7832369 d6be8ab 4776810 d6be8ab 7832369 4776810 7832369 d6be8ab 4776810 d6be8ab 7165748 d6be8ab 7832369 d6be8ab 7165748 d6be8ab 7832369 d6be8ab 4776810 2c61538 d60cfb3 2c61538 cf877eb 7165748 2c61538 7165748 00a5453 2c61538 cf877eb d60cfb3 2c61538 4776810 d6be8ab 2c61538 d6be8ab 4776810 d6be8ab 4776810 2c61538 cf877eb 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 cf877eb 2c61538 d60cfb3 2c61538 cf877eb 2c61538 cf877eb 2c61538 cf877eb 0067c72 2c61538 cf877eb 2c61538 cf877eb 2c61538 93e81e3 00a5453 2c61538 774af64 00a5453 2c61538 00a5453 2c61538 cf877eb 2c61538 774af64 93e81e3 2c61538 774af64 2c61538 b292837 cf877eb 2c61538 d60cfb3 00a5453 0067c72 cf877eb 2c61538 cf877eb 2c61538 cf877eb 774af64 cf877eb 774af64 cf877eb 774af64 2c61538 774af64 2c61538 774af64 2c61538 774af64 b292837 774af64 2c61538 b292837 2c61538 837e8c9 2c61538 d60cfb3 2f71c51 837e8c9 00a5453 d60cfb3 0067c72 2c61538 4776810 0067c72 4776810 2c61538 cf877eb 2c61538 cf877eb 2c61538 cf877eb 2c61538 cf877eb 00a5453 4776810 00a5453 2c61538 cf877eb 4776810 0067c72 2c61538 cf877eb d60cfb3 2c61538 d60cfb3 837e8c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
# install.packages( "~/Documents/strategize-software/strategize", repos = NULL, type = "source",force = F)
# Script: app_ono.R
options(error = NULL)
library(shiny)
library(ggplot2)
library(strategize)
library(dplyr)
# Custom plotting function for optimal strategy distributions
plot_factor <- function(pi_star_list,
pi_star_se_list,
factor_name,
zStar = 1.96,
n_strategies = 1L) {
probs <- lapply(pi_star_list, function(x) x[[factor_name]])
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]])
levels <- names(probs[[1]])
# Create data frame for plotting
df <- do.call(rbind, lapply(1:n_strategies, function(i) {
data.frame(
Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i],
Level = levels,
Probability = probs[[i]]
#SE = ses[[i]]
)
}))
# Manual dodging: Create numeric x-positions with offsets
df$Level_num <- as.numeric(as.factor(df$Level)) # Convert Level to numeric (1, 2, ...)
if (n_strategies == 1) {
df$x_dodged <- df$Level_num # No dodging for single strategy
} else {
# Apply ±offset for Democrat/Republican
df$x_dodged <- df$Level_num +
ifelse(df$Strategy == "Democrat",
-0.05, 0.05)
}
# Plot with ggplot2
p <- ggplot(df, aes(x = x_dodged,
y = Probability,
color = Strategy)) +
# Segment from y=0 to y=Probability
geom_segment(
aes(x = x_dodged, xend = x_dodged,
y = 0, yend = Probability),
size = 0.3
) +
# Point at the probability
geom_point(
size = 2.5
) +
# Text label above the point
geom_text(
aes(x = x_dodged,
label = sprintf("%.2f", Probability)),
vjust = -0.7,
size = 3
) +
# Set x-axis with original Level labels
scale_x_continuous(
breaks = unique(df$Level_num),
labels = unique(df$Level),
limits = c(min(df$x_dodged)-0.20,
max(df$x_dodged)+0.20)
) +
# Labels
labs(
title = "Optimal Distribution for:",
subtitle = sprintf("*%s*", gsub(factor_name,
pattern = "\\.",
replace = " ")),
x = "Level",
y = "Probability"
) +
# Apply Tufte's minimalistic theme
theme_minimal(base_size = 18,
base_line_size = 0) +
theme(
legend.position = "none",
legend.title = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(color = "black", size = 0.5),
axis.text.x = element_text(angle = 45,
hjust = 1,
margin = margin(r = 10)) # Add right margin
) +
# Manual color scale for different strategies
scale_color_manual(values = c("Democrat" = "#89cff0",
"Republican" = "red",
"Optimal" = "black"))
return(p)
}
# UI Definition
ui <- fluidPage(
titlePanel("Exploring strategize with the candidate choice conjoint data"),
tags$p(
style = "text-align: left; margin-top: -10px;",
tags$a(
href = "https://strategizelab.org/",
target = "_blank",
title = "strategizelab.org",
style = "color: #337ab7; text-decoration: none;",
"strategizelab.org ",
icon("external-link", style = "font-size: 12px;")
)
),
# ---- Minimal "Share" button HTML + JS inlined ----
tags$div(
style = "text-align: left; margin: 0.5em 0 0.5em 0em;",
HTML('
<button id="share-button"
style="
display: inline-flex;
align-items: center;
justify-content: center;
gap: 8px;
padding: 5px 10px;
font-size: 16px;
font-weight: normal;
color: #000;
background-color: #fff;
border: 1px solid #ddd;
border-radius: 6px;
cursor: pointer;
box-shadow: 0 1.5px 0 #000;
">
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor"
stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<circle cx="18" cy="5" r="3"></circle>
<circle cx="6" cy="12" r="3"></circle>
<circle cx="18" cy="19" r="3"></circle>
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
</svg>
<strong>Share</strong>
</button>
'),
tags$script(
HTML("
(function() {
const shareBtn = document.getElementById('share-button');
// Reusable helper function to show a small “Copied!” message
function showCopyNotification() {
const notification = document.createElement('div');
notification.innerText = 'Copied to clipboard';
notification.style.position = 'fixed';
notification.style.bottom = '20px';
notification.style.right = '20px';
notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)';
notification.style.color = '#fff';
notification.style.padding = '8px 12px';
notification.style.borderRadius = '4px';
notification.style.zIndex = '9999';
document.body.appendChild(notification);
setTimeout(() => { notification.remove(); }, 2000);
}
shareBtn.addEventListener('click', function() {
const currentURL = window.location.href;
const pageTitle = document.title || 'Check this out!';
// If browser supports Web Share API
if (navigator.share) {
navigator.share({
title: pageTitle,
text: '',
url: currentURL
})
.catch((error) => {
console.log('Sharing failed', error);
});
} else {
// Fallback: Copy URL
if (navigator.clipboard && navigator.clipboard.writeText) {
navigator.clipboard.writeText(currentURL).then(() => {
showCopyNotification();
}, (err) => {
console.error('Could not copy text: ', err);
});
} else {
// Double fallback for older browsers
const textArea = document.createElement('textarea');
textArea.value = currentURL;
document.body.appendChild(textArea);
textArea.select();
try {
document.execCommand('copy');
showCopyNotification();
} catch (err) {
alert('Please copy this link:\\n' + currentURL);
}
document.body.removeChild(textArea);
}
}
});
})();
")
)
),
# ---- End: Minimal Share button snippet ----
sidebarLayout(
sidebarPanel(
h4("Analysis Options"),
radioButtons("case_type", "Case Type:",
choices = c("Average", "Adversarial"),
selected = "Average"),
conditionalPanel(
condition = "input.case_type == 'Average'",
selectInput("respondent_group", "Respondent Group:",
choices = c("All", "Democrat", "Independent", "Republican"),
selected = "All")
),
numericInput("lambda_input", "Lambda (regularization):",
value = 0.01, min = 1e-6, max = 10, step = 0.01),
actionButton("compute", "Compute Results", class = "btn-primary"),
hr(),
h4("Visualization"),
selectInput("factor", "Select Factor to Display:",
choices = NULL),
br(),
selectInput("previousResults", "View Previous Results:",
choices = NULL),
hr(),
h5("Instructions:"),
p("1. Select a case type and, for Average case, a respondent group."),
p("2. Specify the single lambda to be used by strategize."),
p("3. Click 'Compute Results' to generate optimal strategies."),
p("4. Choose a factor to view its distribution."),
p("5. Use 'View Previous Results' to toggle among past computations.")
),
mainPanel(
tabsetPanel(
tabPanel("Optimal Strategy Plot",
plotOutput("strategy_plot", height = "600px")),
tabPanel("Q Value",
verbatimTextOutput("q_value"),
p("Q represents the estimated outcome
under the optimal strategy, with 95% confidence interval.")),
tabPanel("About",
h3("About this page"),
p("This page app explores the ",
a("strategize R package", href = "https://github.com/cjerzak/strategize-software/", target = "_blank"),
" using Ono forced conjoint experimental data.
It computes optimal strategies for Average (optimizing for a respondent group)
and Adversarial (optimizing for both parties in competition) cases on the fly."),
p(strong("Average Case:"),
"Optimizes candidate characteristics for a selected respondent group."),
p(strong("Adversarial Case:"),
"Finds equilibrium strategies for Democrats and Republicans."),
p(strong("More information:"),
a("strategizelab.org", href = "https://strategizelab.org", target = "_blank"))
)
),
br(),
wellPanel(
h4("Currently Selected Computation:"),
verbatimTextOutput("selection_summary")
)
)
)
)
# Server Definition
server <- function(input, output, session) {
# Load data
load("Processed_OnoData.RData")
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
# Prepare a storage structure for caching multiple results
cachedResults <- reactiveValues(data = list())
# Dynamic update of factor choices
observe({
if (input$case_type == "Average") {
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")]
} else {
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")]
}
updateSelectInput(session, "factor", choices = factors, selected = factors[1])
})
# Observe "Compute Results" button to generate a new result and cache it
observeEvent(input$compute, {
withProgress(message = "Computing optimal strategies...", value = 0, {
incProgress(0.2, detail = "Preparing data...")
# Common hyperparameters
params <- list(
nSGD = 1000L,
batch_size = 50L,
penalty_type = "KL",
nFolds = 3L,
use_optax = TRUE,
compute_se = FALSE, # Set to FALSE for quicker results
conf_level = 0.95,
conda_env = "strategize",
conda_env_required = TRUE
)
# Grab the single user-chosen lambda
my_lambda <- input$lambda_input
# We'll define a label to track the result uniquely
# Include the case type, group (if Average), and lambda in the label
if (input$case_type == "Average") {
label <- paste("Case=Average, Group=", input$respondent_group, ", Lambda=", my_lambda, sep="")
} else {
label <- paste("Case=Adversarial, Lambda=", my_lambda, sep="")
}
strategize_start <- Sys.time() # Timing strategize start
if (input$case_type == "Average") {
# Subset data for Average case
if (input$respondent_group == "All") {
indices <- which(my_data$Office == "President")
} else {
indices <- which(
my_data_FULL$R_Partisanship == input$respondent_group &
my_data$Office == "President"
)
}
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in%
c("Office","Party.affiliation","Party.competition")]
Yobs <- Yobs_FULL[indices]
X <- X_FULL[indices, ]
log_pr_w <- log_pr_w_FULL[indices]
pair_id <- pair_id_FULL[indices]
assignmentProbList <- assignmentProbList_FULL[names(FACTOR_MAT)]
incProgress(0.4,
detail = "Running strategize...")
# Compute with strategize
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
X = X,
pair_id = pair_id,
p_list = assignmentProbList[colnames(FACTOR_MAT)],
lambda = my_lambda,
diff = TRUE,
adversarial = FALSE,
use_regularization = TRUE,
K = 1L,
nSGD = params$nSGD,
penalty_type = params$penalty_type,
folds = params$nFolds,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
Qoptimized$n_strategies <- 1L
}
if (input$case_type == "Adversarial"){
# Adversarial case
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition")
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS]
Yobs <- Yobs_FULL
X <- X_FULL
log_pr_w <- log_pr_w_FULL
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS]
incProgress(0.3, detail = "Preparing slate data...")
FactorOptions <- apply(FACTOR_MAT, 2, table)
prior_alpha <- 10
Primary_D <- Primary2016[Primary2016$Party == "Democratic", colnames(FACTOR_MAT)]
Primary_R <- Primary2016[Primary2016$Party == "Republican", colnames(FACTOR_MAT)]
Primary_D_slate <- lapply(colnames(Primary_D), function(col) {
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
Empirical_ <- table(Primary_D[[col]])
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
prop.table(posterior_alpha)
})
names(Primary_D_slate) <- colnames(Primary_D)
Primary_R_slate <- lapply(colnames(Primary_R), function(col) {
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
Empirical_ <- table(Primary_R[[col]])
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
prop.table(posterior_alpha)
})
names(Primary_R_slate) <- colnames(Primary_R)
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate)
indices <- which(
my_data$R_Partisanship %in% c("Republican","Democrat") &
my_data$Office == "President"
)
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in% c("Office","Party.competition","Party.affiliation")]
Yobs <- Yobs_FULL[indices]
my_data_red <- my_data_FULL[indices,]
pair_id <- pair_id_FULL[indices]
cluster_var <- cluster_var_FULL[indices]
my_data_red$Party.affiliation_clean <- ifelse(
my_data_red$Party.affiliation == "Republican Party",
yes = "Republican",
no = ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent")
)
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
incProgress(0.4, detail = "Running strategize...")
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
X = NULL,
p_list = assignmentProbList,
slate_list = slate_list,
varcov_cluster_variable = cluster_var,
competing_group_variable_respondent = my_data_red$R_Partisanship,
competing_group_variable_candidate = my_data_red$Party.affiliation_clean,
competing_group_competition_variable_candidate = my_data_red$Party.competition,
pair_id = pair_id,
respondent_id = my_data_red$respondentIndex,
respondent_task_id = my_data_red$task,
profile_order = my_data_red$profile,
lambda = my_lambda,
diff = TRUE,
use_regularization = TRUE,
force_gaussian = FALSE,
adversarial = TRUE,
K = 1L,
nMonte_adversarial = 20L,
nSGD = params$nSGD,
penalty_type = params$penalty_type,
learning_rate_max = 0.001,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
# check correlation between strategies to diagnose optimization issues
# plot(unlist(Qoptimized$pi_star_point$Democrat), unlist(Qoptimized$pi_star_point$Republican))
Qoptimized$n_strategies <- 2L
}
Qoptimized$runtime_seconds <- as.numeric(difftime(Sys.time(),
strategize_start,
units = "secs"))
Qoptimized <- Qoptimized[c("pi_star_point",
"pi_star_se",
"Q_point",
"Q_se",
"n_strategies",
"runtime_seconds")]
incProgress(0.8, detail = "Finalizing results...")
# Store in the reactiveValues cache
cachedResults$data[[label]] <- Qoptimized
# Update the choice list for previous results
updateSelectInput(session, "previousResults",
choices = names(cachedResults$data),
selected = label)
})
})
# Reactive to pick the result the user wants to display
selectedResult <- reactive({
validate(
need(input$previousResults != "", "No result computed or selected yet.")
)
cachedResults$data[[input$previousResults]]
})
# Render strategy plot
output$strategy_plot <- renderPlot({
req(selectedResult())
factor_name <- input$factor
pi_star_list <- selectedResult()$pi_star_point
pi_star_se_list <- selectedResult()$pi_star_se
n_strategies <- selectedResult()$n_strategies
plot_factor(pi_star_list = pi_star_list,
pi_star_se_list = pi_star_se_list,
factor_name = factor_name,
n_strategies = n_strategies)
})
# Render Q value
output$q_value <- renderText({
req(selectedResult())
q_point <- selectedResult()$Q_point
q_se <- selectedResult()$Q_se
show_se <- length(q_se) > 0
if(show_se){ show_se <- q_se > 0 }
if(!show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f", q_point)) }
if(show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se)) }
sprintf("%s (Runtime: %.3f s)",
render_text,
selectedResult()$runtime_seconds)
})
# Show which set of parameters (label) is currently selected
output$selection_summary <- renderText({
input$previousResults
})
}
# Run the app
shinyApp(ui, server)
|