Spaces:
Running
Running
File size: 30,412 Bytes
5204b6f f91b361 0d2a648 142c273 f91b361 a22e188 bc128ba 142c273 f91b361 5204b6f 142c273 f91b361 142c273 f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 a22e188 f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 a22e188 5204b6f a22e188 f91b361 142c273 ad05a0d 5204b6f ad05a0d 5204b6f ad05a0d f91b361 cb6d45e 5204b6f 6dbfcee 5204b6f 6dbfcee 5204b6f 6dbfcee 5ddae52 5204b6f 5ddae52 5204b6f 9a3dd6a 5ddae52 55384eb 6dbfcee 5204b6f 7245094 5204b6f 6dbfcee 5204b6f 7245094 5204b6f 7245094 5204b6f 7245094 5204b6f 7245094 5204b6f 7245094 5204b6f 7245094 6dbfcee 5204b6f 6dbfcee 5204b6f 6dbfcee 7245094 f91b361 5204b6f f91b361 5204b6f f91b361 3633b24 ad05a0d 5204b6f ad05a0d f91b361 ad05a0d 5204b6f f91b361 5204b6f bc128ba 5204b6f f91b361 142c273 f91b361 5204b6f a22e188 5204b6f a22e188 f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 a22e188 f91b361 5204b6f ad05a0d 5204b6f f91b361 a22e188 5204b6f a22e188 5204b6f a22e188 5204b6f a22e188 5204b6f f91b361 5204b6f f91b361 a22e188 ad05a0d 5204b6f ad05a0d f91b361 5204b6f a22e188 f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f f91b361 5204b6f a22e188 5204b6f a22e188 5204b6f ad05a0d 5204b6f a22e188 5204b6f a22e188 5204b6f f91b361 ad05a0d 5204b6f bc128ba 5204b6f ad05a0d 5204b6f ad05a0d 5204b6f ad05a0d 5204b6f ad05a0d 5204b6f bc128ba 0d2a648 5204b6f 0d2a648 ad05a0d e95bc08 1ec4c87 5ed4088 ad05a0d 0d2a648 ad05a0d 0d2a648 ad05a0d 0d2a648 5204b6f 142c273 f91b361 6dbfcee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# setwd('~/Dropbox/ImageSeq/') # Set your working directory if needed
options(error = NULL)
library(shiny)
library(dplyr)
library(fields) # For image.plot in heatMap
library(akima) # For interpolation
MAX_PLOT_DIM <- 600
safe_dim <- function(client_name, cap = MAX_PLOT_DIM) {
if (exists("session", inherits = TRUE)) { # Shiny context?
cd <- session$clientData[[client_name]]
if (!is.null(cd)) return(min(cap, cd)) # clamp to cap
}
cap # fallback
}
# Load the data from sm.csv
# Ensure 'sm.csv' is in the same directory as the app.R file or provide the full path.
# Add error handling for file loading
sm <- tryCatch({
read.csv("sm.csv")
}, error = function(e) {
stop("Error loading sm.csv: ", e$message, "\nPlease ensure 'sm.csv' is in the application directory.")
})
# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))
# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
# Handle potential errors if split doesn't work as expected
sm$MaxImageDimsLeft <- tryCatch({
unlist(lapply(strsplit(as.character(sm$MaxImageDims), split = "_"), function(x) sort(f2n(x))[1]))
}, error = function(e) {
warning("Could not parse MaxImageDimsLeft from MaxImageDims. Check format (e.g., '64_128').")
NA # Assign NA or a default value
})
sm$MaxImageDimsRight <- tryCatch({
unlist(lapply(strsplit(as.character(sm$MaxImageDims), split = "_"), function(x) sort(f2n(x))[2]))
}, error = function(e) {
warning("Could not parse MaxImageDimsRight from MaxImageDims. Check format (e.g., '64_128').")
NA # Assign NA or a default value
})
# Handle cases where parsing might have failed or where Right dim might be missing for single scale
sm <- sm %>%
mutate(
MaxImageDimsLeft = f2n(MaxImageDimsLeft), # Ensure numeric
MaxImageDimsRight = f2n(MaxImageDimsRight), # Ensure numeric
# If Right is NA after parsing (or originally missing), assume it's the same as Left (single scale)
MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight), MaxImageDimsLeft, MaxImageDimsRight)
)
# Remove rows where essential dimensions couldn't be determined
sm <- sm %>% filter(!is.na(MaxImageDimsLeft) & !is.na(MaxImageDimsRight))
# Heatmap function (no significant changes needed here, aesthetics controlled in server)
heatMap <- function(x, y, z,
main = "",
N, yaxt = NULL,
xlab = "",
ylab = "",
horizontal = FALSE,
useLog = "",
legend.width = 1,
ylim = NULL,
xlim = NULL,
zlim = NULL,
add.legend = TRUE,
legend.only = FALSE,
vline = NULL,
col_vline = "black",
hline = NULL,
col_hline = "black",
cex.lab = 1.3, # Default adjusted slightly
cex.main = 1.5, # Default adjusted slightly
myCol = NULL,
includeMarginals = FALSE,
marginalJitterSD_x = 0.01,
marginalJitterSD_y = 0.01,
openBrowser = FALSE,
optimal_point = NULL) {
if (openBrowser) { browser() }
# Ensure finite values for interpolation range finding
finite_x <- x[is.finite(x)]
finite_y <- y[is.finite(y)]
if(length(finite_x) == 0 || length(finite_y) == 0) {
warning("Insufficient finite x or y data for interpolation range.")
return(NULL) # Cannot proceed
}
min_x <- min(finite_x, na.rm = TRUE)
max_x <- max(finite_x, na.rm = TRUE)
min_y <- min(finite_y, na.rm = TRUE)
max_y <- max(finite_y, na.rm = TRUE)
# Ensure xo and yo sequences are valid
if (min_x == max_x) { max_x <- min_x + 1e-6 } # Avoid zero range
if (min_y == max_y) { max_y <- min_y + 1e-6 } # Avoid zero range
xo_seq <- seq(min_x, max_x, length = N)
yo_seq <- seq(min_y, max_y, length = N)
# Perform interpolation
s_ <- tryCatch({
akima::interp(x = x, y = y, z = z,
xo = xo_seq,
yo = yo_seq,
duplicate = "mean",
linear = TRUE) # Use linear interpolation by default
}, error = function(e) {
warning("Akima interpolation failed: ", e$message)
return(NULL) # Return NULL if interp fails
})
if (is.null(s_)) return(NULL) # Exit if interpolation failed
if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
# Default color palette if none provided
if (is.null(myCol)) { myCol = hcl.colors(50, palette = "YlOrRd", rev = TRUE) }
imageFxn <- if (add.legend) fields::image.plot else graphics::image
if (!grepl(useLog, pattern = "z")) {
imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
zlim = zlim, legend.only = legend.only)
} else {
useLog <- gsub(useLog, pattern = "z", replace = "")
z_finite <- s_$z[is.finite(s_$z)]
if (length(z_finite) == 0 || all(z_finite <= 0)) {
warning("Cannot compute log scale for z: All finite values are non-positive.")
# Fallback to non-log scale or plot without z-log
imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = paste(main, "(z-log failed)"),
cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
zlim = zlim, legend.only = legend.only)
} else {
zTicks <- pretty(range(log(z_finite[z_finite > 0]), na.rm = TRUE), n = 5) # Use pretty for nice log ticks
zTickLabels <- signif(exp(zTicks), 2) # Nicer labels
# ep_ <- min(z_finite[z_finite > 0], na.rm=TRUE) * 0.1 # Small positive value based on data
ep_ <- 1e-9 # Or a small fixed epsilon
s_$z[s_$z <= ep_] <- ep_ # Replace non-positive with epsilon for log
imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
axis.args = list(at = zTicks, labels = zTickLabels),
main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
horizontal = horizontal, col = myCol, legend.width = legend.width,
zlim = if(!is.null(zlim)) log(zlim) else NULL, # Apply log to zlim if provided
legend.only = legend.only)
}
}
if (!is.null(vline)) { abline(v = vline, lwd = 3, col = col_vline, lty = 2) } # Thinner, dashed line
if (!is.null(hline)) { abline(h = hline, lwd = 3, col = col_hline, lty = 2) } # Thinner, dashed line
if (includeMarginals) {
points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x, na.rm = TRUE)), # Added na.rm
rep(ylim[1] + 0.02 * diff(ylim), length(y)), # Adjust position slightly off bottom
pch = "|", col = "darkgray")
points(rep(xlim[1] + 0.02 * diff(xlim), length(x)), # Adjust position slightly off left
y + rnorm(length(y), sd = sd(y, na.rm = TRUE) * marginalJitterSD_y), # Added na.rm
pch = "-", col = "darkgray")
}
# Add green star at optimal point if provided and valid
if (!is.null(optimal_point) && is.finite(optimal_point$x) && is.finite(optimal_point$y)) {
points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 2.5, lwd = 3) # Slightly smaller star
}
}
##############################################################################
# IMPORTANT: Store the meaningful labels for metric in a named vector.
# The "name" is what is displayed to the user in the dropdown,
# while the "value" is the underlying column in the dataset.
##############################################################################
metric_choices <- c(
"Mean AUTOC RATE Ratio" = "AUTOC_rate_std_ratio_mean",
"Mean AUTOC RATE" = "AUTOC_rate_mean",
"Mean SD of AUTOC RATE" = "AUTOC_rate_std_mean",
"Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc",
"Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc",
"Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc",
"Mean Variable Importance (Img 1)" = "MeanVImportHalf1", # Shorter label
"Mean Variable Importance (Img 2)" = "MeanVImportHalf2", # Shorter label
"Mean Frac Top k Feats (Img 1)" = "FracTopkHalf1", # Shorter label
"Mean RMSE" = "RMSE"
)
##############################################################################
# Helper function to retrieve the *label* from its code
##############################################################################
getMetricLabel <- function(metric_value) {
# This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean".
# If it doesn't find a match, return the code itself.
lbl <- names(metric_choices)[which(metric_choices == metric_value)]
if (length(lbl) == 0 || is.na(lbl)) return(metric_value) # Handle NA/no match
lbl
}
# UI Definition
ui <- fluidPage(
titlePanel("Multiscale Representations Forge"),
tags$head(
# Add some basic CSS for better spacing/responsiveness if needed
tags$style(HTML("
.shiny-plot-output { /* Ensure plot output behaves well */
margin: auto; /* Center if container allows */
}
.control-label { /* Ensure labels are readable */
font-weight: bold;
}
#contextNote { /* Style for the context note */
margin-top: 15px;
font-size: 0.9em; /* Slightly smaller font */
line-height: 1.6; /* Better readability */
}
#share-button { margin-bottom: 15px; } /* Add space below share button */
"))
),
tags$p(
style = "text-align: left; margin-top: -10px; margin-bottom: 10px;", # Added margin-bottom
tags$a(
href = "https://planetarycausalinference.org/",
target = "_blank",
title = "PlanetaryCausalInference.org",
style = "color: #337ab7; text-decoration: none; font-weight: bold;", # Make link bold
"PlanetaryCausalInference.org ",
icon("external-link", style = "font-size: 12px;")
)
),
# ---- Share button HTML + JS ----
tags$div(
style = "text-align: left;", # Removed fixed margin
HTML('
<button id="share-button"
style="
display: inline-flex;
align-items: center;
justify-content: center;
gap: 8px;
padding: 5px 10px;
font-size: 14px; /* Slightly smaller font */
font-weight: normal;
color: #333; /* Darker text */
background-color: #f8f9fa; /* Lighter background */
border: 1px solid #ccc; /* Lighter border */
border-radius: 4px; /* Smaller radius */
cursor: pointer;
box-shadow: 0 1px 1px rgba(0,0,0,0.05); /* Softer shadow */
">
<svg width="16" height="16" viewBox="0 0 24 24" fill="none" stroke="currentColor"
stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<circle cx="18" cy="5" r="3"></circle>
<circle cx="6" cy="12" r="3"></circle>
<circle cx="18" cy="19" r="3"></circle>
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
</svg>
<strong>Share</strong>
</button>
'),
tags$script(
HTML("
(function() {
const shareBtn = document.getElementById('share-button');
if (!shareBtn) return; // Exit if button not found
function showCopyNotification() {
const notification = document.createElement('div');
notification.innerText = 'Link copied!'; /* Shorter message */
notification.style.position = 'fixed';
notification.style.bottom = '15px'; /* Adjust position */
notification.style.left = '50%'; /* Center horizontally */
notification.style.transform = 'translateX(-50%)'; /* Correct centering */
notification.style.backgroundColor = 'rgba(0, 0, 0, 0.75)';
notification.style.color = '#fff';
notification.style.padding = '8px 15px'; /* Adjust padding */
notification.style.borderRadius = '4px';
notification.style.fontSize = '14px'; /* Match button font */
notification.style.zIndex = '10000'; /* Ensure visibility */
notification.style.boxShadow = '0 2px 5px rgba(0,0,0,0.2)'; /* Add shadow */
document.body.appendChild(notification);
setTimeout(() => { notification.remove(); }, 1500); /* Shorter duration */
}
shareBtn.addEventListener('click', function() {
const currentURL = window.location.href;
const pageTitle = document.title || 'Multiscale Explorer';
if (navigator.share) {
navigator.share({
title: pageTitle,
text: 'Check out this multiscale analysis:', /* Add context */
url: currentURL
})
.catch((error) => {
// If user cancels share, don't log error unless it's a real failure
if (error.name !== 'AbortError') {
console.log('Sharing failed', error);
}
});
} else if (navigator.clipboard && navigator.clipboard.writeText) {
navigator.clipboard.writeText(currentURL).then(() => {
showCopyNotification();
}, (err) => {
console.error('Could not copy text: ', err);
// Fallback alert if clipboard fails unexpectedly
alert('Failed to copy link. Please copy manually:\\n' + currentURL);
});
} else {
// Basic fallback for very old browsers
try {
const textArea = document.createElement('textarea');
textArea.value = currentURL;
textArea.style.position = 'fixed'; // Prevent scrolling
textArea.style.opacity = '0'; // Hide element
document.body.appendChild(textArea);
textArea.select();
document.execCommand('copy');
showCopyNotification();
document.body.removeChild(textArea);
} catch (err) {
alert('Sharing not supported. Please copy this link manually:\\n' + currentURL);
}
}
});
})();
")
)
),
# ---- End: Share button snippet ----
sidebarLayout(
sidebarPanel(
width = 3, # Explicitly set sidebar width (adjust as needed 1-12)
selectInput("application", "Application:", # Colon for clarity
choices = unique(sm$application),
selected = unique(sm$application)[1]),
selectInput("model", "Model:",
choices = unique(sm$optimizeImageRep),
selected = "clip-rsicd"),
########################################################################
# Use our named vector 'metric_choices' directly in selectInput
########################################################################
selectInput("metric", "Metric:",
choices = metric_choices,
selected = "AUTOC_rate_std_ratio_mean"),
checkboxInput("compareToBest", "Compare to best single scale?", value = FALSE), # Question format
# Add some explanation directly in the sidebar
tags$hr(), # Horizontal line separator
tags$p(tags$small("Adjust parameters to explore how multiscale image representations impact model performance or heterogeneity discovery across different applications."))
),
mainPanel(
width = 9, # Explicitly set main panel width (should sum to 12 with sidebar)
# Wrap plot in a div for potential future styling/sizing control
div(
# *** ADJUSTED PLOT OUTPUT ***
plotOutput("heatmapPlot", height = "500px", width = "100%")
),
# *** ADDED VERTICAL SPACE ***
br(), # Add a line break for spacing
# OR use a div with margin:
tags$div(style="margin-bottom: 80px;"), # Alternative way to add space
# Use uiOutput for potentially HTML content in the note
uiOutput("contextNote")
)
)
)
# Server Definition
server <- function(input, output, session) { # Add session argument
# Function to determine whether to maximize or minimize the metric
get_better_direction <- function(metric_value) {
# Assuming lower SD and lower RMSE are better
if (grepl("std_mean|RMSE", metric_value, ignore.case = TRUE)) {
"min"
} else {
"max" # Assume higher is better for others (RATE, Ratio, VImport, FracTopk)
}
}
# Reactive data processing
filteredData <- reactive({
req(input$application, input$model) # Ensure inputs are available
df <- sm %>%
filter(application == input$application,
optimizeImageRep == input$model) %>%
# Ensure dimensions are numeric before filtering/grouping
mutate(
MaxImageDimsLeft = as.numeric(MaxImageDimsLeft),
MaxImageDimsRight = as.numeric(MaxImageDimsRight),
metric_value = as.numeric(get(input$metric)) # Get chosen metric value
) %>%
filter(is.finite(MaxImageDimsLeft) & is.finite(MaxImageDimsRight) & is.finite(metric_value)) # Keep only valid rows
# Check if data exists after filtering
if (nrow(df) == 0) {
warning("No valid data found for the selected Application/Model/Metric combination.")
return(NULL)
}
df
})
# Reactive expression to compute grouped/summarized data and best single scale
summaryData <- reactive({
data <- filteredData()
req(data) # Require filtered data
# Group data
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(metric_value, na.rm = TRUE),
se_metric = sd(metric_value, na.rm = TRUE) / sqrt(n()),
n = n(),
.groups = "drop"
) %>%
filter(is.finite(mean_metric)) # Ensure mean is valid after aggregation
if (nrow(grouped_data) < 3) {
warning("Less than 3 unique dimension pairs after grouping. Cannot interpolate.")
return(NULL) # Not enough data points for reliable interpolation
}
# Check variability in dimensions needed for interpolation
if (length(unique(grouped_data$MaxImageDimsLeft)) < 2 || length(unique(grouped_data$MaxImageDimsRight)) < 2) {
warning("Insufficient variability in one or both image dimensions for interpolation.")
return(NULL)
}
better_dir <- get_better_direction(input$metric)
# Calculate best single scale metric *from the summarized data*
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") {
max(single_scale_data$mean_metric, na.rm = TRUE)
} else {
min(single_scale_data$mean_metric, na.rm = TRUE)
}
} else {
NA # No single scale data available for comparison
}
# Calculate improvement only if best_single_scale_metric is valid
if (is.finite(best_single_scale_metric)) {
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
} else {
# If no valid single-scale baseline, improvement cannot be calculated
grouped_data <- grouped_data %>% mutate(improvement = NA_real_)
# Optionally disable the checkbox if comparison isn't possible
# updateCheckboxInput(session, "compareToBest", value = FALSE, label = "Compare to best single scale (N/A)")
# shinyjs::disable("compareToBest") # Requires shinyjs package
}
list(
grouped_data = grouped_data,
best_single_scale_metric = best_single_scale_metric,
better_dir = better_dir
)
})
# Reactive expression for interpolation (depends on summaryData)
interpolatedData <- reactive({
sumData <- summaryData()
req(sumData) # Requires valid summary data
grouped_data <- sumData$grouped_data
better_dir <- sumData$better_dir
# Determine which z-value to interpolate based on user choice and availability
use_improvement <- input$compareToBest && "improvement" %in% names(grouped_data) && any(is.finite(grouped_data$improvement))
z_to_interpolate <- if (use_improvement) {
grouped_data$improvement
} else {
grouped_data$mean_metric
}
# Filter out rows where the chosen z value is not finite
valid_rows <- is.finite(grouped_data$MaxImageDimsLeft) &
is.finite(grouped_data$MaxImageDimsRight) &
is.finite(z_to_interpolate)
if (sum(valid_rows) < 3) {
warning("Less than 3 valid points remaining for interpolation after filtering non-finite z-values.")
return(NULL)
}
x <- grouped_data$MaxImageDimsLeft[valid_rows]
y <- grouped_data$MaxImageDimsRight[valid_rows]
z <- z_to_interpolate[valid_rows]
# Double-check dimension variability again with filtered data
if (length(unique(x)) < 2 || length(unique(y)) < 2) {
warning("Insufficient dimension variability after filtering for interpolation.")
return(NULL)
}
# Perform interpolation
s_ <- tryCatch({
akima::interp(
x = x,
y = y,
z = z,
xo = seq(min(x, na.rm=TRUE), max(x, na.rm=TRUE), length = 50),
yo = seq(min(y, na.rm=TRUE), max(y, na.rm=TRUE), length = 50),
duplicate = "mean",
linear = TRUE # Ensure linear is explicitly set if default changes
)
}, error = function(e){
warning("Interpolation failed: ", e$message)
return(NULL)
})
if (is.null(s_) || !is.matrix(s_$z) || all(!is.finite(s_$z))) {
warning("Interpolation result is invalid or contains no finite values.")
return(NULL) # Interpolation failed or yielded no usable results
}
# Find optimal point from the *interpolated* grid (s_$z)
optimal_z_value <- NA
optimal_x <- NA
optimal_y <- NA
if(any(is.finite(s_$z))) { # Proceed only if there are finite values in the grid
# Determine optimization direction for the *interpolated* z-value
# If we interpolated 'improvement', we always maximize it.
# Otherwise, use the original metric's direction.
interp_better_dir <- if(use_improvement) "max" else better_dir
if (interp_better_dir == "max") {
max_idx <- which.max(s_$z)
optimal_z_value <- max(s_$z, na.rm = TRUE)
} else {
max_idx <- which.min(s_$z) # Index of the minimum
optimal_z_value <- min(s_$z, na.rm = TRUE)
}
# Convert linear index to row/column
row_col <- arrayInd(max_idx, .dim = dim(s_$z))
optimal_x <- s_$x[row_col[1, 1]]
optimal_y <- s_$y[row_col[1, 2]]
} else {
warning("No finite values in the interpolated grid to find optimum.")
}
list(
s_ = s_,
optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z_value),
interpolated_metric_name = if(use_improvement) "Improvement" else getMetricLabel(input$metric)
)
})
# Heatmap Output
output$heatmapPlot <- renderPlot({
sumData <- summaryData()
interpData <- interpolatedData()
# Use req() for cleaner checking of reactive results
req(sumData, interpData, cancelOutput = TRUE) # Ensure both summary and interpolation are valid
grouped_data <- sumData$grouped_data
optimal_point <- interpData$optimal_point
# Determine z values and title based on checkbox and data availability
use_improvement <- input$compareToBest && "improvement" %in% names(grouped_data) && any(is.finite(grouped_data$improvement))
if (use_improvement) {
z <- grouped_data$improvement
# Check if improvement calculation was possible
if (all(is.na(z))) {
plot.new()
title(main = "Cannot Compute Improvement", sub = "No valid single-scale baseline found.", col.main = "red")
return()
}
main_title <- paste(input$application, "-", getMetricLabel(input$metric), "\nImprovement Over Best Single Scale")
plot_zlim <- range(interpData$s_$z, na.rm = TRUE) # Use range of interpolated improvement
} else {
z <- grouped_data$mean_metric
main_title <- paste(input$application, "-", getMetricLabel(input$metric))
plot_zlim <- range(interpData$s_$z, na.rm = TRUE) # Use range of interpolated metric
if (input$compareToBest) { # Add note if checkbox is ticked but comparison N/A
main_title <- paste0(main_title, "\n(Comparison to single scale not available)")
}
}
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
# Filter data for plotting to match data used for interpolation
valid_rows <- is.finite(x) & is.finite(y) & is.finite(z)
if(sum(valid_rows) == 0) {
plot.new()
text(0.5, 0.5, "No valid data to plot.", cex = 1.5)
return()
}
x_plot <- x[valid_rows]
y_plot <- y[valid_rows]
z_plot <- z[valid_rows]
# *** ADJUSTED MARGINS AND COLORS ***
#par(mar=c(5, 5, 4, 2) + 0.1) # Adjusted margins (bottom, left, top, right)
par(mar=c(5.1, 4.1, 3.1, 4.1)) # Margins: bottom, left, top, right
# *** USING HCL COLORS ***
customPalette <- hcl.colors(50, palette = "YlOrRd", rev = TRUE) # Or "Viridis", "Plasma" etc.
# Call heatMap using the raw (but filtered) data points
# The interpolation result (interpData$s_) is implicitly used by heatMap via akima::interp
# We pass the *original* x, y, z used for interpolation to heatMap
heatMap(
x = x_plot,
y = y_plot,
z = z_plot, # Pass the original data used for interpolation
N = 50, # Interpolation grid size used within heatMap
main = main_title,
xlab = "Image Dimension 1 (log scale)", # Clarify log scale
ylab = "Image Dimension 2 (log scale)", # Clarify log scale
useLog = "xy", # Keep log scale for axes
myCol = customPalette,
cex.lab = 1.3, # Slightly reduced label size
cex.main = 1.5, # Slightly reduced main title size
zlim = plot_zlim, # Use zlim from the *interpolated* data for consistent coloring
optimal_point = optimal_point, # Pass the calculated optimal point
add.legend = TRUE,
legend.width = 1.5 # Slightly wider legend
)
},
width = function() safe_dim("output_heatmapPlot_width"),
height = function() safe_dim("output_heatmapPlot_height"),
res = 96,
execOnResize = TRUE) # Adjust resolution if needed
# Contextual Note Output (using renderUI for HTML)
output$contextNote <- renderText({
SharedContextText <- c(
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
"For more information, see the associated paper, <a href='https://arxiv.org/abs/2411.02134' target='_blank'>arXiv.org/abs/2411.02134</a>
(<a href='https://connorjerzak.com/wp-content/uploads/2024/11/MultilevelBib.txt' target='_blank'>BibTex</a>),
and <a href='https://www.youtube.com/watch?v=RvAoJGMlKAI' target='_blank'>YouTube tutorial</a>.
",
"<div style='font-size: 10px; line-height: 1.5;'>",
"<b>Glossary:</b><br>",
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
"• <b>RATE Ratio:</b> A t-statistic-like quantity indicating how much a data-model combination captures treatment-effect variation. Ratio of the RATE and its standard error. It can employ two weighting scemes (AUTOC and Qini).<br>",
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
"</div>"
)
chosen_metric_label <- getMetricLabel(input$metric)
if (input$compareToBest) {
c(
paste(
"This heatmap shows the improvement in",
paste0("'", chosen_metric_label, "'"),
"over the best single scale for",
input$application,
"using the", input$model, "model. The green star marks the optimal point."
),
SharedContextText
)
} else {
c(
paste(
"This heatmap displays",
paste0("'", chosen_metric_label, "'"),
"for", input$application,
"using the", input$model,
"model across different image dimension combinations. The green star marks the optimal point."
),
SharedContextText
)
}
})
}
# Run the Shiny App
shinyApp(ui = ui, server = server) |