Spaces:
Running
Running
File size: 26,998 Bytes
34af2a0 f193599 34af2a0 4488a10 34af2a0 f193599 34af2a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
# app.R β OrgEmbed: Generate Organizational Name Embeddings with LinkOrgs
# ------------------------------------------------------------------------------
# Features
# - CSV upload or text paste, with column auto-detect + explicit selector
# - Validations & friendly notifications
# - One-click embedding generation (ML backend, v4 by default)
# - Real-time progress milestones (+ large-input confirmation)
# - Summary card + DT preview
# - Clean CSV export of embeddings
# - Basic embedding statistics (incl. PCA variance explained)
# - Modern, accessible UI (bslib theme), tooltips, and help modal
#
# Assumptions
# - Internet required on first ML backend setup/download.
# - LinkOrgs installed & accessible; otherwise the app guides you to install.
#
# Best Practices
# - Reactive parsing and caching
# - Robust tryCatch blocks with console logging
# - Clear separation of concerns with small helpers
# ------------------------------------------------------------------------------
options(shiny.maxRequestSize = 50 * 1024^2) # accept CSVs up to ~X MB
options(error = NULL)
suppressPackageStartupMessages({
library(shiny)
library(bslib)
library(DT)
library(shinyWidgets)
})
# conda configuration for cross-platform Docker environments
configure_python <- function() {
cat("[conda config] Starting Python configuration...\n")
# Define potential conda locations for different platforms/Docker images
conda_paths <- c(
Sys.getenv("CONDA_EXE"), # User-defined
Sys.which("conda"), # System PATH
"/opt/conda/bin/conda", # Common Docker location
"/usr/local/bin/conda", # Alternative location
"/home/user/miniconda3/bin/conda", # User miniconda
"/root/miniconda3/bin/conda", # Root miniconda
"/usr/bin/conda", # System conda
file.path(Sys.getenv("HOME"), "miniconda3", "bin", "conda"), # Home miniconda
file.path(Sys.getenv("HOME"), "anaconda3", "bin", "conda") # Home anaconda
)
# Remove empty strings and find first existing conda
conda_paths <- conda_paths[nzchar(conda_paths)]
conda_bin <- Find(file.exists, conda_paths)
python_configured <- FALSE
config_method <- "none"
# Method 1: Try conda environment
if (!is.null(conda_bin) && file.exists(conda_bin)) {
cat("[conda config] Found conda at:", conda_bin, "\n")
tryCatch({
reticulate::use_condaenv("LinkOrgs_env", conda = conda_bin, required = TRUE)
python_configured <- TRUE
config_method <- "conda_env"
cat("[reticulate] Successfully configured conda environment 'LinkOrgs_env'\n")
}, error = function(e) {
cat("[conda config] Failed to use conda env 'LinkOrgs_env':", conditionMessage(e), "\n")
})
} else {
cat("[conda config] No conda binary found in expected locations\n")
}
# Method 2: Try RETICULATE_PYTHON environment variable
if (!python_configured && nzchar(Sys.getenv("RETICULATE_PYTHON"))) {
python_path <- Sys.getenv("RETICULATE_PYTHON")
cat("[conda config] Trying RETICULATE_PYTHON:", python_path, "\n")
tryCatch({
reticulate::use_python(python_path, required = TRUE)
python_configured <- TRUE
config_method <- "env_var"
cat("[conda config] Successfully configured Python from RETICULATE_PYTHON\n")
}, error = function(e) {
cat("[conda config] Failed to use RETICULATE_PYTHON:", conditionMessage(e), "\n")
})
}
# Method 3: Try default conda base environment as fallback
if (!python_configured && !is.null(conda_bin)) {
cat("[conda config] Trying default conda base environment...\n")
tryCatch({
reticulate::use_condaenv("base", conda = conda_bin, required = FALSE)
python_configured <- TRUE
config_method <- "conda_base"
cat("[conda config] Successfully configured conda base environment\n")
}, error = function(e) {
cat("[conda config] Failed to use conda base environment:", conditionMessage(e), "\n")
})
}
# Method 4: Let reticulate auto-discover
if (!python_configured) {
cat("[conda config] Falling back to reticulate auto-discovery...\n")
tryCatch({
# Force reticulate to initialize
reticulate::py_config()
python_configured <- TRUE
config_method <- "auto_discovery"
cat("[conda config] Successfully auto-discovered Python\n")
}, error = function(e) {
cat("[conda config] Auto-discovery failed:", conditionMessage(e), "\n")
})
}
# Always attempt to log final configuration (this runs no matter what)
tryCatch({
config <- reticulate::py_config()
cat("[conda config] FINAL CONFIG:\n")
cat("[conda config] Method:", config_method, "\n")
cat("[conda config] Python:", config$python, "\n")
cat("[conda config] Version:", config$version, "\n")
cat("[conda config] NumPy:", config$numpy, "\n")
if (!is.null(conda_bin)) {
cat("[reticulate] Conda:", conda_bin, "\n")
}
}, error = function(e) {
cat("[conda config] ERROR: Could not retrieve Python configuration:", conditionMessage(e), "\n")
cat("[conda config] Configuration method attempted:", config_method, "\n")
})
return(python_configured)
}
# Execute the configuration
configure_python()
# Optional tooltips (if bsplus is available)
has_bsplus <- requireNamespace("bsplus", quietly = TRUE)
if (has_bsplus) {
bs_tooltip <- function(id, title) bsplus::shinyInput_label_embed(id) %>%
bsplus::bs_embed_tooltip(title, placement = "right")
} else {
bs_tooltip <- function(id, title) NULL
}
#--- Helpers -------------------------------------------------------------------
# Nicely guess the name column from a data.frame
guess_name_col <- function(df) {
nms <- tolower(names(df))
patterns <- c("^names?$", "^orgnames?$", "organization", "^org$", "company", "entity", "name")
cand <- unique(unlist(lapply(patterns, function(p) which(grepl(p, nms)))))
if (length(cand) >= 1) names(df)[cand[1]] else names(df)[1]
}
# Parse pasted text into a data.frame with one "names" column
parse_pasted_names <- function(txt) {
lines <- unlist(strsplit(txt, "\n", fixed = TRUE))
lines <- trimws(lines)
lines <- lines[nzchar(lines)]
if (length(lines) == 0) return(data.frame(names = character(0)))
data.frame(names = lines, stringsAsFactors = FALSE)
}
# Rename embedding columns to emb_001, emb_002, ...
rename_embed_cols <- function(df, name_col) {
embed_cols <- setdiff(names(df), name_col)
if (length(embed_cols) == 0) return(df)
new_names <- sprintf("emb_%03d", seq_along(embed_cols))
names(df)[match(embed_cols, names(df))] <- new_names
df
}
# Extract only the numeric embedding matrix from a final result
only_embedding_matrix <- function(final_df) {
is_num <- vapply(final_df, is.numeric, logical(1))
final_df[, is_num, drop = FALSE]
}
# Safe notification wrapper
notify <- function(txt, type = "message", duration = 5) {
shiny::showNotification(txt, type = type, duration = duration)
}
#--- UI ------------------------------------------------------------------------
theme <- bs_theme(bootswatch = "flatly")
ui <- page_sidebar(
tags$head(tags$title("OrgEmbed: LinkOrgs Embeddings")),
title = div(
tags$a(
"OrgEmbed:",
href = "https://huggingface.co/spaces/cjerzak/LinkOrgs_Online",
target = "_blank",
rel = "noopener noreferrer",
style = "font-weight:700; text-decoration:none; color:inherit;",
id = "orgembed_link",
title = "Open the LinkOrgs Space in a new tab"
),
span(" Generate Organizational Name Embeddings Using ",
tags$a("LinkOrgs",
href = "https://github.com/cjerzak/LinkOrgs-software",
target = "_blank",
style = "color: inherit; text-decoration: underline;"),
style = "color: #D3D3D3;")
),
theme = theme,
sidebar = sidebar(
width = 360,
tags$style(HTML("
.sidebar .shiny-input-container { margin-bottom: 12px; }
.small-note { font-size: 0.9rem; color: #666; }
.tight { margin-top: -6px; }
")),
# Input mode
radioButtons(
"input_mode", "Input method",
choices = c("CSV upload" = "csv", "Text paste" = "text"),
selected = "csv", inline = TRUE
),
#bs_tooltip("input_mode", "Choose how you want to provide names"),
# CSV upload controls
conditionalPanel(
"input.input_mode == 'csv'",
fileInput("file_csv", "Upload CSV", accept = ".csv", multiple = FALSE),
uiOutput("col_select_ui"),
div(class = "small-note tight",
"Tip: We guess the organization name column but let you override it.")
),
# Text paste controls
conditionalPanel(
"input.input_mode == 'text'",
textAreaInput(
"text_names", "Paste one name per line", rows = 6, placeholder = "Apple Inc.\nAlphabet\nMicrosoft"
),
actionLink("load_examples", "Load examples"),
#bs_tooltip("text_names", "One organization per line. Empty lines are ignored.")
),
hr(),
# Advanced options
numericInput("max_rows", "Max rows to process", value = 5000, min = 100, step = 100),
checkboxInput("include_names", "Include original names/columns in output", value = TRUE),
selectInput("ml_version", "ML model version", choices = c("v1", "v2", "v3", "v4"), selected = "v4"),
hr(),
# Main action
actionButton("process", "Process Names", class = "btn-primary", icon = icon("play")),
helpText("Large inputs (> 1000 rows) will prompt for confirmation."),
hr(),
# Visible warning for users
div(class = "alert alert-warning", style = "margin-top:8px; padding:8px;",
strong("Warning: "), "Do not navigate away from page while computing embeddings! May take 10 mins to compile neural nets."
),
# External help link (opens in new tab)
# External help link (opens in new tab)
tags$a(
id = "open_help_link",
href = "https://connorjerzak.com/linkorgs-summary/",
target = "_blank",
rel = "noopener",
icon("circle-question"),
" Technical details."
),
tags$span(
"Citation: Libgober, B., & Jerzak, C. T. (2024). Linking datasets on organizations using half a billion open-collaborated records. ",
tags$i("Political Science Research and Methods. "),
tags$a(
href = "https://doi.org/10.1017/psrm.2024.55",
target = "_blank",
rel = "noopener",
"https://doi.org/10.1017/psrm.2024.55"
),
#". ",
tags$a(
href = "https://connorjerzak.com/wp-content/uploads/2024/07/LinkOrgsBib.txt",
target = "_blank",
rel = "noopener",
" [.bib]"
)
),
),
# Main body
layout_columns(
col_widths = c(12),
# Input Preview Card
card(
header = "1) Preview input",
card_body(
div(class = "small-note", "Shows up to the first 10 rows by default."),
fluidRow(
column(
width = 4,
prettySwitch("show_all_preview", "Show full table", value = FALSE)
),
column(
width = 4,
actionButton("refresh_preview", "Refresh preview", icon = icon("arrows-rotate"))
)
),
DTOutput("input_preview")
)
),
# Embedding Generation & Summary Card
card(
header = "2) Generate embeddings",
card_body(
# Summary (appears after success)
uiOutput("summary_card"),
br(),
conditionalPanel(
"output.has_embeddings == true",
strong("Embeddings preview"),
div(class = "small-note tight", "First 5 rows; download the full CSV below."),
DTOutput("emb_preview"),
br(),
downloadButton("download_embeddings", "Download Embeddings CSV", class = "btn-success")
)
)
),
# Analysis Card
conditionalPanel(
"output.has_embeddings == true",
card(
header = "3) Embedding Summary",
card_body(
div(class = "small-note",
"Some statistics and PCA variance explained."),
uiOutput("stats_display")
)
)
)
)
)
#--- Server --------------------------------------------------------------------
server <- function(input, output, session) {
# State ----------------------------------------------------------------------
backend_ready <- reactiveVal(FALSE)
embeddings_df <- reactiveVal(NULL) # final data.frame (original + embeddings)
pca_2d <- reactiveVal(NULL) # data.frame with 2D PCA
pca_10d <- reactiveVal(NULL) # data.frame with 10D PCA
pending_df <- reactiveVal(NULL) # for large dataset confirmation
large_threshold <- 1000
# Help modal -----------------------------------------------------------------
observeEvent(input$open_help_link, ignoreInit = TRUE, {
showModal(modalDialog(
title = "How to use OrgEmbed",
easyClose = TRUE, size = "l",
tagList(
tags$ol(
tags$li("Choose an input method: upload a CSV or paste names."),
tags$li("For CSV, confirm/select the column that contains organization names."),
tags$li("Click ", tags$strong("Process Names"), " to generate embeddings."),
tags$li("After completion, inspect the preview and click ",
tags$strong("Download Embeddings CSV"), " to export."),
tags$li("Optionally, use PCA to reduce to 2 or 10 dimensions and download.")
),
tags$hr(),
tags$p(class = "small-note",
"First-time ML backend setup needs internet to download model files.")
)
))
})
# Fill examples for text paste -----------------------------------------------
observeEvent(input$load_examples, {
updateTextAreaInput(session, "text_names", value = "Google\nAlphabet Inc.\nMicrosoft\nMeta Platforms\nOpenAI")
})
# Reactive: parse CSV or text input ------------------------------------------
raw_input <- reactive({
mode <- input$input_mode
if (identical(mode, "csv")) {
req(input$file_csv)
df <- tryCatch(
read.csv(input$file_csv$datapath, stringsAsFactors = FALSE, check.names = FALSE),
error = function(e) {
cat("[CSV read error] ", conditionMessage(e), "\n")
notify("Could not read CSV. Ensure it's a valid .csv file.", "error", 7)
NULL
}
)
validate(need(!is.null(df) && nrow(df) > 0, "Uploaded CSV appears empty."))
df
} else {
validate(need(nzchar(input$text_names), "Please paste at least one name."))
parse_pasted_names(input$text_names)
}
})
# Update/select name column after CSV upload
observeEvent(raw_input(), {
if (identical(input$input_mode, "csv")) {
df <- raw_input()
guessed <- guess_name_col(df)
updateSelectInput(session, "col_select", choices = names(df), selected = guessed)
}
})
# UI for selecting names column (CSV)
output$col_select_ui <- renderUI({
req(input$input_mode == "csv", raw_input())
selectInput("col_select", "Names column", choices = names(raw_input()))
})
# Input preview (first 10 rows or full) --------------------------------------
preview_data <- reactive({
df <- raw_input()
if (identical(input$input_mode, "csv")) {
# show selected column + keep other cols for context
# Nothing to subset here; selection is shown but preview shows all cols
} else {
# text mode ensures column named "names"
}
df
})
observeEvent(input$refresh_preview, {
# No-op: triggers re-run of preview_data by invalidating reactives
invisible(TRUE)
})
output$input_preview <- renderDT({
df <- preview_data()
req(df)
to_show <- if (isTRUE(input$show_all_preview)) df else head(df, 10)
datatable(
to_show,
options = list(pageLength = 10, scrollX = TRUE, dom = 'tip'),
rownames = FALSE
)
})
# Large dataset confirmation flow --------------------------------------------
proceed_with_large <- function(df) {
pending_df(df)
showModal(modalDialog(
title = "Large dataset detected",
"You are about to process ", tags$b(nrow(df)), " rows.",
tags$p("This may take 1β5 minutes depending on your hardware and network. Proceed?"),
footer = tagList(
actionButton("confirm_large", "Proceed", class = "btn-primary"),
modalButton("Cancel")
),
easyClose = TRUE
))
}
observeEvent(input$confirm_large, {
df <- pending_df()
removeModal()
if (!is.null(df)) isolate(run_embeddings(df))
pending_df(NULL)
})
# Core: run embeddings --------------------------------------------------------
run_embeddings <- function(df) {
req(nrow(df) > 0)
# Determine the names column
by_col <- if (identical(input$input_mode, "csv")) {
req(input$col_select %in% names(df))
input$col_select
} else {
# text mode
"names"
}
# Validate names column non-empty
validate(need(any(nzchar(trimws(df[[by_col]]))), "Please provide at least one valid name."))
# Enforce max rows
if (nrow(df) > input$max_rows) {
notify(sprintf("Input truncated to max_rows = %d.", input$max_rows), "warning", 6)
df <- df[seq_len(input$max_rows), , drop = FALSE]
}
withProgress(message = "Generating embeddings...", value = 0, {
incProgress(0.10, detail = "Parsing input...")
# Defensive copy and clean names
df[[by_col]] <- trimws(df[[by_col]])
df <- df[nzchar(df[[by_col]]), , drop = FALSE]
validate(need(nrow(df) > 0, "Please provide at least one valid name."))
incProgress(0.20, detail = "Initializing model...")
incProgress(0.50, detail = "Calling LinkOrgs (ML embeddings)...")
if (!requireNamespace("LinkOrgs", quietly = TRUE)) {
notify("Package 'LinkOrgs' not installed. See README to install.", "error", 10)
return(invisible(NULL))
}
# Main call: ExportEmbeddingsOnly = TRUE
rep_x <- NULL
err <- NULL
pdf(NULL) # Open null device to discard plots
tryCatch({
rep_x <- LinkOrgs::LinkOrgs(
x = df, y = NULL,
by.x = by_col,
algorithm = "ml",
ml_version = input$ml_version,
ExportEmbeddingsOnly = TRUE
)
}, error = function(e) {
err <<- e
})
dev.off() # Clean up the null device
if (!is.null(err)) {
cat("[LinkOrgs error] ", conditionMessage(err), "\n")
notify("Embedding generation failed. Backend setup may be incomplete. Check internet/conda and retry.", "error", 10)
return(invisible(NULL))
}
incProgress(0.80, detail = "Post-processing embeddings...")
# rep_x$embedx is a data.frame with first column = by_col and remaining = embeddings
embed_df <- rep_x$embedx
# standardize embedding column names
embed_df <- rename_embed_cols(embed_df, name_col = by_col)
# Compose final output
final <- if (isTRUE(input$include_names)) {
# Bind to original df, avoiding duplicated name col
cols_to_add <- setdiff(names(embed_df), by_col)
cbind(df, embed_df[, cols_to_add, drop = FALSE])
} else {
# Return only embeddings (keep name column for context)
embed_df
}
embeddings_df(final)
incProgress(1.00, detail = "Complete!")
notify(sprintf("Embeddings generated for %d names.", nrow(final)), "message", 5)
})
}
# Process button: orchestrate large confirmation + run -----------------------
observeEvent(input$process, {
df <- raw_input()
req(df)
# Validate CSV names column selection exists
if (identical(input$input_mode, "csv")) {
if (!isTRUE(input$col_select %in% names(df))) {
notify("Invalid names columnβplease select again.", "error", 7)
return(invisible(NULL))
}
} else {
# Text mode already enforced with req(text != "")
}
# Large dataset prompt
if (nrow(df) > large_threshold) {
proceed_with_large(df)
return(invisible(NULL))
}
# Otherwise proceed immediately
run_embeddings(df)
})
# Summary card ---------------------------------------------------------------
output$summary_card <- renderUI({
final <- embeddings_df()
if (is.null(final)) {
tagList(
div(class = "small-note",
"Click ", tags$strong("Process Names"),
" to start. You'll see progress updates here.")
)
} else {
emb_mat <- only_embedding_matrix(final)
dims <- ncol(emb_mat)
n <- nrow(final)
bslib::card(
bslib::card_body(
HTML(sprintf(
"<h4 style='margin-top:0;'>Embeddings ready</h4>
<p class='small-note' style='margin-bottom:6px;'>
Generated embeddings for <b>%d</b> names.
</p>
<p class='small-note tight'>
Dimensions: <b>%d</b> (columns starting with <code>emb_</code>).
</p>", n, dims
))
)
)
}
})
# Flag for conditionalPanel
output$has_embeddings <- reactive({
!is.null(embeddings_df())
})
outputOptions(output, "has_embeddings", suspendWhenHidden = FALSE)
# Embedding preview (first 5 rows) -------------------------------------------
output$emb_preview <- renderDT({
final <- embeddings_df(); req(final)
to_show <- head(final, 5)
datatable(
to_show,
options = list(pageLength = 5, scrollX = TRUE, dom = 'tip'),
rownames = FALSE
)
})
# Download full embeddings ----------------------------------------------------
output$download_embeddings <- downloadHandler(
filename = function() "org_embeddings.csv",
content = function(file) {
final <- embeddings_df(); req(final)
write.csv(final, file, row.names = FALSE)
}
)
# - helpful statistics
embedding_stats <- reactive({
final <- embeddings_df(); req(final)
emb <- only_embedding_matrix(final); req(ncol(emb) >= 1)
# extra safety: coerce to a numeric matrix in case anything came in as characters
emb <- as.matrix(emb)
mode(emb) <- "numeric"
pc <- prcomp(emb, center = TRUE, scale. = TRUE)
var_exp <- pc$sdev^2 / sum(pc$sdev^2) * 100
cum_var <- cumsum(var_exp)
list(
n = nrow(emb),
dims = ncol(emb),
p1 = round(var_exp[1], 1),
p2 = round(cum_var[min(2, length(cum_var))], 1),
p10 = round(cum_var[min(10, length(cum_var))], 1),
p100 = round(cum_var[min(100,length(cum_var))], 1)
)
})
# add to output
output$stats_display <- renderUI({
stats <- embedding_stats()
# Terminal-style HTML with monospace font and terminal aesthetics
terminal_output <- HTML(paste0(
'<div style="
background-color: #0c0c0c;
color: #00ff00;
font-family: \'Courier New\', monospace;
padding: 20px;
border-radius: 5px;
border: 2px solid #333;
box-shadow: 0 0 10px rgba(0, 255, 0, 0.1);
font-size: 14px;
line-height: 1.6;
">',
'<div style="color: #888; margin-bottom: 10px;">$ linkorg_stats --summary</div>',
'<div style="border-bottom: 1px solid #333; margin-bottom: 15px; padding-bottom: 10px;">',
'<span style="color: #00ff00;">βββββββββββββββββββββββββββββββββββββββββββββββββββββββ</span><br/>',
'<span style="color: #00ff00;"> EMBEDDING SUMMARY STATISTICS</span><br/>',
'<span style="color: #00ff00;">βββββββββββββββββββββββββββββββββββββββββββββββββββββββ</span>',
'</div>',
'<div style="margin-bottom: 8px;">',
'<span style="color: #888;">[INFO]</span> ',
'<span style="color: #fff;">Processing complete at:</span> ',
'<span style="color: #0099ff;">', format(Sys.time(), "%Y-%m-%d %H:%M:%S %Z"), '</span>',
'</div>',
'<div style="margin-bottom: 8px;">',
'<span style="color: #888;">[DATA]</span> ',
'<span style="color: #fff;">Total embeddings generated:</span> ',
'<span style="color: #ffff00; font-weight: bold;">', stats$n, '</span>',
'</div>',
'<div style="margin-bottom: 8px;">',
'<span style="color: #888;">[DATA]</span> ',
'<span style="color: #fff;">Embedding dimensions:</span> ',
'<span style="color: #ffff00; font-weight: bold;">', stats$dims, '</span>',
'</div>',
'<div style="margin-top: 15px; border-top: 1px solid #333; padding-top: 15px;">',
'<div style="color: #00ff00; margin-bottom: 10px;">βΆ Principal Component Analysis Results:</div>',
'</div>',
'<div style="margin-left: 20px; margin-bottom: 8px;">',
'<span style="color: #888;">ββ</span> ',
'<span style="color: #fff;">PC1 variance explained:</span> ',
'<span style="color: #00ff00;">', sprintf("%.1f%%", stats$p1), '</span>',
'</div>',
'<div style="margin-left: 20px; margin-bottom: 8px;">',
'<span style="color: #888;">ββ</span> ',
'<span style="color: #fff;">PC1-2 cumulative variance:</span> ',
'<span style="color: #00ff00;">', sprintf("%.1f%%", stats$p2), '</span>',
'</div>',
'<div style="margin-left: 20px; margin-bottom: 8px;">',
'<span style="color: #888;">ββ</span> ',
'<span style="color: #fff;">PC1-10 cumulative variance:</span> ',
'<span style="color: #00ff00;">', sprintf("%.1f%%", stats$p10), '</span>',
'</div>',
'<div style="margin-left: 20px; margin-bottom: 8px;">',
'<span style="color: #888;">ββ</span> ',
'<span style="color: #fff;">PC1-100 cumulative variance:</span> ',
'<span style="color: #00ff00;">', sprintf("%.1f%%", stats$p100), '</span>',
'</div>',
'<div style="margin-top: 15px; padding-top: 10px; border-top: 1px solid #333;">',
'<span style="color: #888;">[STATUS]</span> ',
'<span style="color: #00ff00;">β Analysis complete</span>',
'</div>',
'<div style="margin-top: 8px;">',
'<span style="color: #888;">$ <span style="animation: blink 1s infinite;">_</span></span>',
'</div>',
'<style>',
'@keyframes blink {',
' 0%, 50% { opacity: 1; }',
' 51%, 100% { opacity: 0; }',
'}',
'</style>',
'</div>'
))
terminal_output
})
}
# Run --------------------------------------------------------------------------
shinyApp(ui, server)
|