Spaces:
Running
Running
File size: 14,214 Bytes
8443315 ffa03c8 8443315 f90dfb4 8443315 dc1d5c3 ffa03c8 8443315 e4bf282 8443315 b253e66 8443315 af8abd6 bc6cc98 a7f1a72 bc6cc98 b253e66 19a8bac b7dac90 19a8bac dc1d5c3 b7dac90 dc1d5c3 106dd6f dc1d5c3 3102d58 4de934d 3102d58 106dd6f 3102d58 d2e3092 e2a018d d2e3092 dca8e6c d2e3092 dca8e6c d2e3092 f3cb237 d2e3092 106dd6f 2cb1651 106dd6f f3cb237 d2e3092 dca8e6c 4b314cc f3cb237 e4bf282 ffa03c8 19a8bac ab89a9d ffa03c8 19a8bac dc1d5c3 f3cb237 b253e66 19a8bac 8443315 d2e3092 dc1d5c3 d2e3092 fdbcf74 d2e3092 dc1d5c3 d2e3092 b837582 d2e3092 535e574 fe36eff e4bf282 dc1d5c3 f962dd0 ffa03c8 dd5d2e0 ffa03c8 dc1d5c3 ab89a9d dc1d5c3 ffa03c8 dc1d5c3 ab89a9d dc1d5c3 10ac8e4 ab89a9d ffa03c8 dc1d5c3 ab89a9d ffa03c8 dc1d5c3 ab89a9d dc1d5c3 ab89a9d dc1d5c3 e4bf282 bb204b7 dc1d5c3 ebb68fb dc1d5c3 e4bf282 dc1d5c3 ffa03c8 dc1d5c3 bb204b7 b6ab215 dc1d5c3 e5222c4 535e574 dc1d5c3 e4bf282 dc1d5c3 ffa03c8 bb204b7 dc1d5c3 e4bf282 dc1d5c3 c868028 dc1d5c3 535e574 e4bf282 535e574 f90dfb4 0ca3572 f90dfb4 0ca3572 f90dfb4 535e574 d2e3092 535e574 e5222c4 dc1d5c3 b6ab215 dc1d5c3 19a8bac dc1d5c3 bb204b7 e4bf282 f90dfb4 dc1d5c3 ffa03c8 bb204b7 8443315 e4bf282 8443315 a7f1a72 dc1d5c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
from pathlib import Path
from typing import Any, Dict, Hashable
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding, GPT2LMHeadModel, PreTrainedTokenizer
from transformers import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TemperatureLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper
from context_probing import estimate_unigram_logprobs
from context_probing.core import nll_score, kl_div_score
from context_probing.utils import columns_to_diagonals, get_windows, ids_to_readable_tokens
root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
"highlighted_text", path=root_dir / "highlighted_text" / "build"
)
compact_layout = st.experimental_get_query_params().get("compact", ["false"]) == ["true"]
if not compact_layout:
st.title("Context length probing")
st.markdown(
"""[📃 Paper](https://arxiv.org/abs/2212.14815) |
[🌍 Website](https://cifkao.github.io/context-probing) |
[🧑💻 Code](https://github.com/cifkao/context-probing)
"""
)
generation_mode = st.radio(
"Mode", ["Basic mode", "Generation mode"],
horizontal=True, label_visibility="collapsed"
) == "Generation mode"
st.caption(
"In basic mode, we analyze the model's one-step-ahead predictions on the input text. "
"In generation mode, we generate a continuation of the input text (prompt) "
"and analyze the model's predictions influencing the generated tokens."
)
model_name = st.selectbox(
"Model",
[
"distilgpt2",
"gpt2",
"EleutherAI/gpt-neo-125m",
"roneneldan/TinyStories-8M",
"roneneldan/TinyStories-33M",
]
)
metric_name = st.radio(
"Metric",
(["KL divergence"] if not generation_mode else []) + ["NLL loss"],
index=0,
horizontal=True,
help="**KL divergence** is computed between the predictions with the reduced context "
"(corresponding to the highlighted token) and the predictions with the full context "
"($c_\\text{max}$ tokens). \n"
"**NLL loss** is the negative log-likelihood loss (a.k.a. cross entropy) for the target "
"token."
)
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)
# Make sure the logprobs do not use up more than ~4 GB of memory
MAX_MEM = 4e9 / (torch.finfo(torch.float16).bits / 8)
# Select window lengths such that we are allowed to fill the whole window without running out of memory
# (otherwise the window length is irrelevant); if using NLL, memory is not a consideration, but we want
# to limit runtime
multiplier = tokenizer.vocab_size if metric_name == "KL divergence" else 16384 # arbitrary number
window_len_options = [
w for w in [8, 16, 32, 64, 128, 256, 512, 1024]
if w == 8 or w * (2 * w) * multiplier <= MAX_MEM
]
window_len = st.select_slider(
r"Window size ($c_\text{max}$)",
options=window_len_options,
value=min(128, window_len_options[-1]),
help="The maximum context length $c_\\text{max}$ for which we compute the scores. Smaller "
"windows are less computationally intensive, allowing for longer inputs."
)
# Now figure out how many tokens we are allowed to use:
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
max_tokens = int(MAX_MEM / (multiplier * window_len) - window_len)
max_tokens = min(max_tokens, 4096)
enable_null_context = st.checkbox(
"Enable length-1 context",
value=True,
help="This enables computing scores for context length 1 (i.e. the previous token), which "
"involves using an estimate of the model's unigram distribution. This is not originally "
"proposed in the paper."
)
generate_kwargs = {}
with st.empty():
if generation_mode:
with st.expander("Generation options", expanded=False):
generate_kwargs["max_new_tokens"] = st.slider(
"Max. number of generated tokens",
min_value=8, max_value=min(1024, max_tokens), step=8, value=min(128, max_tokens)
)
col1, col2, col3, col4 = st.columns(4)
with col1:
generate_kwargs["temperature"] = st.number_input(
min_value=0.01, value=0.9, step=0.05, label="`temperature`"
)
with col2:
generate_kwargs["top_p"] = st.number_input(
min_value=0., value=0.95, max_value=1., step=0.05, label="`top_p`"
)
with col3:
generate_kwargs["typical_p"] = st.number_input(
min_value=0., value=1., max_value=1., step=0.05, label="`typical_p`"
)
with col4:
generate_kwargs["repetition_penalty"] = st.number_input(
min_value=1., value=1., step=0.05, label="`repetition_penalty`"
)
DEFAULT_TEXT = """
We present context length probing, a novel explanation technique for causal
language models, based on tracking the predictions of a model as a function of the length of
available context, and allowing to assign differential importance scores to different contexts.
The technique is model-agnostic and does not rely on access to model internals beyond computing
token-level probabilities. We apply context length probing to large pre-trained language models
and offer some initial analyses and insights, including the potential for studying long-range
dependencies.
""".replace("\n", " ").strip()
with st.expander(
f"Prompt" if generation_mode else f"Input text (≤\u2009{max_tokens} tokens)", expanded=True
):
text = st.text_area(
"Input text",
st.session_state.get("input_text", DEFAULT_TEXT),
key="input_text", label_visibility="collapsed"
)
inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
label_ids = [*input_ids[1:], tokenizer.eos_token_id]
inputs["labels"] = [label_ids]
num_user_tokens = len(input_ids)
if num_user_tokens < 1:
st.error("Please enter at least one token.", icon="🚨")
st.stop()
if not generation_mode and num_user_tokens > max_tokens:
st.error(
f"Your input has {num_user_tokens} tokens. Please enter at most {max_tokens} tokens "
f"or try reducing the window size.",
icon="🚨"
)
st.stop()
with st.spinner("Loading model…"):
model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)
@st.cache_data(show_spinner=False)
def get_unigram_logprobs(
_model: GPT2LMHeadModel,
_tokenizer: PreTrainedTokenizer,
model_name: str
):
path = Path("data") / "unigram_logprobs" / f'{model_name.replace("/", "_")}.npy'
if path.exists():
return torch.as_tensor(np.load(path, allow_pickle=False))
else:
return estimate_unigram_logprobs(_model, _tokenizer)
if enable_null_context:
with st.spinner("Obtaining unigram probabilities…"):
unigram_logprobs = get_unigram_logprobs(model, tokenizer, model_name=model_name)
else:
unigram_logprobs = torch.full((tokenizer.vocab_size,), torch.nan)
unigram_logprobs = tuple(unigram_logprobs.tolist())
@torch.inference_mode()
def get_logprobs(model, inputs, metric):
logprobs = []
batch_size = 8
num_items = len(inputs["input_ids"])
pbar = st.progress(0)
for i in range(0, num_items, batch_size):
pbar.progress(i / num_items, f"{i}/{num_items}")
batch = {k: v[i:i + batch_size] for k, v in inputs.items()}
batch_logprobs = model(**batch).logits.log_softmax(dim=-1).to(torch.float16)
if metric != "KL divergence":
batch_logprobs = torch.gather(
batch_logprobs, dim=-1, index=batch["labels"][..., None]
)
logprobs.append(batch_logprobs)
logprobs = torch.cat(logprobs, dim=0)
pbar.empty()
return logprobs
def get_logits_processor(temperature, top_p, typical_p, repetition_penalty) -> LogitsProcessorList:
processor = LogitsProcessorList()
if repetition_penalty != 1.0:
processor.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
if temperature != 1.0:
processor.append(TemperatureLogitsWarper(temperature))
if top_p < 1.0:
processor.append(TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1))
if typical_p < 1.0:
processor.append(TypicalLogitsWarper(mass=typical_p, min_tokens_to_keep=1))
return processor
@torch.inference_mode()
def generate(model, inputs, metric, window_len, max_new_tokens, **kwargs):
assert metric == "NLL loss"
start = max(0, inputs["input_ids"].shape[1] - window_len + 1)
input_ids = inputs["input_ids"][:, start:]
logits_warper = get_logits_processor(**kwargs)
new_ids, logprobs = [], []
eos_idx = None
pbar = st.progress(0)
max_steps = max_new_tokens + window_len - 1
model_kwargs = dict(use_cache=True)
for i in range(max_steps):
pbar.progress(i / max_steps, f"{i}/{max_steps}")
if input_ids.shape[1] == window_len:
model_kwargs.update(use_cache=False)
if "past_key_values" in model_kwargs:
del model_kwargs["past_key_values"]
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
model_outputs = model(**model_inputs)
model_kwargs = model._update_model_kwargs_for_generation(model_outputs, model_kwargs, is_encoder_decoder=False)
logits_window = model_outputs.logits.squeeze(0)
logprobs_window = logits_window.log_softmax(dim=-1)
if eos_idx is None:
probs_next = logits_warper(input_ids, logits_window[[-1]]).softmax(dim=-1)
next_token = torch.multinomial(probs_next, num_samples=1).item()
if next_token == tokenizer.eos_token_id or i >= max_new_tokens - 1:
eos_idx = i
else:
next_token = tokenizer.eos_token_id
new_ids.append(next_token)
input_ids = torch.cat([input_ids, torch.tensor([[next_token]])], dim=1)
if input_ids.shape[1] > window_len:
input_ids = input_ids[:, 1:]
if logprobs_window.shape[0] == window_len:
logprobs.append(
logprobs_window[torch.arange(window_len), input_ids.squeeze(0)]
)
if eos_idx is not None and i - eos_idx >= window_len - 1:
break
pbar.empty()
[input_ids] = input_ids.tolist()
new_ids = new_ids[:eos_idx + 1]
label_ids = [*input_ids, *new_ids][1:]
return torch.as_tensor(new_ids), torch.as_tensor(label_ids), torch.stack(logprobs)[:, :, None]
@torch.inference_mode()
def run_context_length_probing(
_model: GPT2LMHeadModel,
_tokenizer: PreTrainedTokenizer,
_inputs: Dict[str, torch.Tensor],
window_len: int,
unigram_logprobs: tuple,
metric: str,
generation_mode: bool,
generate_kwargs: Dict[str, Any],
cache_key: Hashable
):
del cache_key
[input_ids] = _inputs["input_ids"]
[label_ids] = _inputs["labels"]
with st.spinner("Running model…"):
if generation_mode:
new_ids, label_ids, logprobs = generate(
model=_model,
inputs=_inputs.convert_to_tensors("pt"),
metric=metric,
window_len=window_len,
**generate_kwargs
)
output_ids = [*input_ids, *new_ids]
window_len = logprobs.shape[1]
else:
window_len = min(window_len, len(input_ids))
inputs_sliding = get_windows(
_inputs,
window_len=window_len,
start=0,
pad_id=_tokenizer.eos_token_id
).convert_to_tensors("pt")
logprobs = get_logprobs(model=_model, inputs=inputs_sliding, metric=metric)
output_ids = [*input_ids, label_ids[-1]]
num_tgt_tokens = logprobs.shape[0]
with st.spinner("Computing scores…"):
logprobs = logprobs.transpose(0, 1)
logprobs = columns_to_diagonals(logprobs)
logprobs = logprobs[:, :num_tgt_tokens]
label_ids = label_ids[-num_tgt_tokens:]
unigram_logprobs = torch.as_tensor(unigram_logprobs)
unigram_logprobs[~torch.isfinite(unigram_logprobs)] = torch.nan
if logprobs.shape[-1] == 1:
unigram_logprobs = unigram_logprobs[label_ids].unsqueeze(-1)
else:
unigram_logprobs = unigram_logprobs.unsqueeze(0).repeat(num_tgt_tokens, 1)
logprobs = torch.cat([unigram_logprobs.unsqueeze(0), logprobs], dim=0)
if metric == "NLL loss":
scores = nll_score(logprobs=logprobs, labels=label_ids, allow_overwrite=True)
elif metric == "KL divergence":
scores = kl_div_score(logprobs, labels=label_ids, allow_overwrite=True)
del logprobs # possibly overwritten by the score computation to save memory
scores = (-scores).diff(dim=0).transpose(0, 1)
scores = scores.nan_to_num()
scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-6
scores = scores.to(torch.float16)
if generation_mode:
scores = F.pad(scores, (0, 0, max(0, len(input_ids) - window_len + 1), 0), value=0.)
return output_ids, scores
if not generation_mode:
run_context_length_probing = st.cache_data(run_context_length_probing, show_spinner=False)
if generation_mode:
st.button("Rerun", type="primary")
output_ids, scores = run_context_length_probing(
_model=model,
_tokenizer=tokenizer,
_inputs=inputs,
window_len=window_len,
unigram_logprobs=unigram_logprobs,
metric=metric_name,
generation_mode=generation_mode,
generate_kwargs=generate_kwargs,
cache_key=(model_name, text),
)
tokens = ids_to_readable_tokens(tokenizer, output_ids, strip_whitespace=False)
st.markdown('<label style="font-size: 14px;">Output</label>', unsafe_allow_html=True)
highlighted_text_component(
tokens=tokens,
scores=scores.tolist(),
prefix_len=len(input_ids) if generation_mode else 0
)
|