File size: 697 Bytes
be86868
 
99b17f2
5a8c11f
4326ebc
 
34d4d45
9b0d5c8
f18c254
8a8dc07
f18c254
 
6aacc74
f18c254
 
70330b3
99b17f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import streamlit as st
from transformers import pipeline
import gc

st.header("Sentiment-demo-app")
st.subheader("Please be patient and wait up to a minute until the demo app is loaded.")
st.caption("This is a very simple demo application for a zero-shot classification pipeline to classify positive, neutral, or negative sentiment for a short text. Enter your text in the box below and press CTRl+ENTER to run the model.")

classifier = pipeline("zero-shot-classification", model='facebook/bart-large-mnli')

text = st.text_area('Enter text here!')
candidate_labels = ['Positive', 'Neutral', 'Negative']

if text:
  out = classifier(text, candidate_labels)
  st.json(out)
  del out
  gc.collect()