File size: 8,835 Bytes
80442c0
 
 
 
f240072
80442c0
 
 
f240072
 
80442c0
 
 
 
 
 
 
 
 
f240072
 
 
 
 
 
 
 
 
 
80442c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f240072
 
 
 
 
 
 
80442c0
 
 
 
 
 
 
 
 
 
 
 
f240072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import torch
import gradio as gr
import torchvision
from utils import *
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from huggingface_hub import Repository, upload_file



n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1

REPOSITORY_DIR = "data"
LOCAL_DIR = 'data_local'
os.makedirs(LOCAL_DIR,exist_ok=True)


HF_TOKEN = os.getenv("HF_TOKEN")

HF_DATASET ="mnist-adversarial-dataset"

torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)

train_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('files/', train=True, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])),
  batch_size=batch_size_train, shuffle=True)

test_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('files/', train=False, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])),
  batch_size=batch_size_test, shuffle=True)


# Source: https://nextjournal.com/gkoehler/pytorch-mnist
class MNIST_Model(nn.Module):
    def __init__(self):
        super(MNIST_Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


def train(epochs,network,optimizer):
    
    train_losses=[]
    network.train()
    for epoch in range(epochs):
        for batch_idx, (data, target) in enumerate(train_loader):
            optimizer.zero_grad()
            output = network(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
                train_losses.append(loss.item())
        
                torch.save(network.state_dict(), 'model.pth')
                torch.save(optimizer.state_dict(), 'optimizer.pth')

def test():
    test_losses=[]
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
            test_loss /= len(test_loader.dataset)
        test_losses.append(test_loss)
        print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))



random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)

network = MNIST_Model()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)        


model_state_dict = 'model.pth'
optimizer_state_dict = 'optmizer.pth'

if os.path.exists(model_state_dict):
    network_state_dict = torch.load(model_state_dict)
    network.load_state_dict(network_state_dict)

if os.path.exists(optimizer_state_dict):
    optimizer_state_dict = torch.load(optimizer_state_dict)
    optimizer.load_state_dict(optimizer_state_dict)                      



# Train
#train(n_epochs,network,optimizer)


def image_classifier(inp):
    """
    It takes an image as input and returns a dictionary of class labels and their corresponding
    confidence scores.
    
    :param inp: the image to be classified
    :return: A dictionary of the class index and the confidence value.
    """
    input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
    with torch.no_grad():

        prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
        #pred_number = prediction.data.max(1, keepdim=True)[1]
        sorted_prediction = torch.sort(prediction,descending=True)
        confidences={}
        for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
            confidences.update({s:v})
        return confidences


def flag(input_image,correct_result):
    # take an image, the wrong result, the correct result.
    # push to dataset. 
    # get size of current dataset 
   
    # Write audio to file
    metadata_name = get_unique_name()
    SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
    os.makedirs(SAVE_FILE_DIR,exist_ok=True)
    image_output_filename = os.path.join(SAVE_FILE_DIR,'image.png')
    try:
        input_image.save(image_output_filename)
    except Exception:
        raise Exception(f"Had issues saving PIL image to file")    

    # Write metadata.json to file
    json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl')
    metadata= {'id':metadata_name,'file_name':'image.png',
                'correct_number':correct_result
                }
    
    dump_json(metadata,json_file_path)  
        
    # Simply upload the audio file and metadata using the hub's upload_file
    # Upload the image
    repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'image.png'))
    
    _ = upload_file(path_or_fileobj = image_output_filename,
                path_in_repo =repo_image_path,
                repo_id=f'chrisjay/{HF_DATASET}',
                repo_type='dataset',
                token=HF_TOKEN
            ) 

    # Upload the metadata
    repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'metadata.jsonl'))
    _ = upload_file(path_or_fileobj = json_file_path,
                path_in_repo =repo_json_path,
                repo_id=f'chrisjay/{HF_DATASET}',
                repo_type='dataset',
                token=HF_TOKEN
            )        
    
    output = f'<div> Successfully saved to flagged dataset. </div>'
    return output



def main():
    TITLE = "# MNIST Adversarial: Try to fool this MNIST model"
    description = """This project is about dynamic adversarial data collection (DADC). 
    The basic idea is to do data collection by collecting “adversarial data”, the kind of data that is difficult for a model to predict correctly. 
    This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label.

    ### What to do:
    - Draw a number from 0-9.
    - Click `Submit` and see the model's prediciton.
    - If the model misclassifies it, Flag that example.
    - This will add your (adversarial) example to a dataset on which the model will be trained later.
    """

    MODEL_IS_WRONG = """
    > Did the model get it wrong? Choose the correct prediction below and flag it. 
    
    When you flag it, the instance is saved to our dataset and the model is trained on it.
    """
    #block = gr.Blocks(css=BLOCK_CSS)
    block = gr.Blocks()

    with block:
        gr.Markdown(TITLE)

        with gr.Tabs():
            gr.Markdown(description)
            with gr.TabItem('MNIST'):
                with gr.Row():     
            

                    image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil")
                    label_output = gr.outputs.Label(num_top_classes=10)

                submit = gr.Button("Submit")
                gr.Markdown(MODEL_IS_WRONG)
                number_dropdown = gr.Dropdown(choices=[i for i in range(10)],type='value',default=None,label="What was the correct prediction?") 

                flag_btn = gr.Button("Flag")
                output_result = gr.outputs.HTML()
                submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
                flag_btn.click(flag,inputs=[image_input,number_dropdown],outputs=[output_result])
                
            
    block.launch()  
        
     


if __name__ == "__main__":
    main()