Spaces:
Runtime error
Runtime error
File size: 8,835 Bytes
80442c0 f240072 80442c0 f240072 80442c0 f240072 80442c0 f240072 80442c0 f240072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import torch
import gradio as gr
import torchvision
from utils import *
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from huggingface_hub import Repository, upload_file
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
REPOSITORY_DIR = "data"
LOCAL_DIR = 'data_local'
os.makedirs(LOCAL_DIR,exist_ok=True)
HF_TOKEN = os.getenv("HF_TOKEN")
HF_DATASET ="mnist-adversarial-dataset"
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('files/', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('files/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_test, shuffle=True)
# Source: https://nextjournal.com/gkoehler/pytorch-mnist
class MNIST_Model(nn.Module):
def __init__(self):
super(MNIST_Model, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def train(epochs,network,optimizer):
train_losses=[]
network.train()
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
train_losses.append(loss.item())
torch.save(network.state_dict(), 'model.pth')
torch.save(optimizer.state_dict(), 'optimizer.pth')
def test():
test_losses=[]
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)
network = MNIST_Model()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
momentum=momentum)
model_state_dict = 'model.pth'
optimizer_state_dict = 'optmizer.pth'
if os.path.exists(model_state_dict):
network_state_dict = torch.load(model_state_dict)
network.load_state_dict(network_state_dict)
if os.path.exists(optimizer_state_dict):
optimizer_state_dict = torch.load(optimizer_state_dict)
optimizer.load_state_dict(optimizer_state_dict)
# Train
#train(n_epochs,network,optimizer)
def image_classifier(inp):
"""
It takes an image as input and returns a dictionary of class labels and their corresponding
confidence scores.
:param inp: the image to be classified
:return: A dictionary of the class index and the confidence value.
"""
input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
with torch.no_grad():
prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
#pred_number = prediction.data.max(1, keepdim=True)[1]
sorted_prediction = torch.sort(prediction,descending=True)
confidences={}
for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
confidences.update({s:v})
return confidences
def flag(input_image,correct_result):
# take an image, the wrong result, the correct result.
# push to dataset.
# get size of current dataset
# Write audio to file
metadata_name = get_unique_name()
SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
os.makedirs(SAVE_FILE_DIR,exist_ok=True)
image_output_filename = os.path.join(SAVE_FILE_DIR,'image.png')
try:
input_image.save(image_output_filename)
except Exception:
raise Exception(f"Had issues saving PIL image to file")
# Write metadata.json to file
json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl')
metadata= {'id':metadata_name,'file_name':'image.png',
'correct_number':correct_result
}
dump_json(metadata,json_file_path)
# Simply upload the audio file and metadata using the hub's upload_file
# Upload the image
repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'image.png'))
_ = upload_file(path_or_fileobj = image_output_filename,
path_in_repo =repo_image_path,
repo_id=f'chrisjay/{HF_DATASET}',
repo_type='dataset',
token=HF_TOKEN
)
# Upload the metadata
repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'metadata.jsonl'))
_ = upload_file(path_or_fileobj = json_file_path,
path_in_repo =repo_json_path,
repo_id=f'chrisjay/{HF_DATASET}',
repo_type='dataset',
token=HF_TOKEN
)
output = f'<div> Successfully saved to flagged dataset. </div>'
return output
def main():
TITLE = "# MNIST Adversarial: Try to fool this MNIST model"
description = """This project is about dynamic adversarial data collection (DADC).
The basic idea is to do data collection by collecting “adversarial data”, the kind of data that is difficult for a model to predict correctly.
This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label.
### What to do:
- Draw a number from 0-9.
- Click `Submit` and see the model's prediciton.
- If the model misclassifies it, Flag that example.
- This will add your (adversarial) example to a dataset on which the model will be trained later.
"""
MODEL_IS_WRONG = """
> Did the model get it wrong? Choose the correct prediction below and flag it.
When you flag it, the instance is saved to our dataset and the model is trained on it.
"""
#block = gr.Blocks(css=BLOCK_CSS)
block = gr.Blocks()
with block:
gr.Markdown(TITLE)
with gr.Tabs():
gr.Markdown(description)
with gr.TabItem('MNIST'):
with gr.Row():
image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil")
label_output = gr.outputs.Label(num_top_classes=10)
submit = gr.Button("Submit")
gr.Markdown(MODEL_IS_WRONG)
number_dropdown = gr.Dropdown(choices=[i for i in range(10)],type='value',default=None,label="What was the correct prediction?")
flag_btn = gr.Button("Flag")
output_result = gr.outputs.HTML()
submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
flag_btn.click(flag,inputs=[image_input,number_dropdown],outputs=[output_result])
block.launch()
if __name__ == "__main__":
main() |