File size: 5,600 Bytes
80442c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import torch
import gradio as gr
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim


n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10

random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)

train_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('files/', train=True, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])),
  batch_size=batch_size_train, shuffle=True)

test_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('files/', train=False, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])),
  batch_size=batch_size_test, shuffle=True)


# Source: https://nextjournal.com/gkoehler/pytorch-mnist
class MNIST_Model(nn.Module):
    def __init__(self):
        super(MNIST_Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


def train(epochs,network,optimizer):
    
    train_losses=[]
    network.train()
    for epoch in range(epochs):
        for batch_idx, (data, target) in enumerate(train_loader):
            optimizer.zero_grad()
            output = network(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
                train_losses.append(loss.item())
        
                torch.save(network.state_dict(), 'model.pth')
                torch.save(optimizer.state_dict(), 'optimizer.pth')

def test():
    test_losses=[]
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
            test_loss /= len(test_loader.dataset)
        test_losses.append(test_loss)
        print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))



random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)

network = MNIST_Model()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)        


model_state_dict = 'model.pth'
optimizer_state_dict = 'optmizer.pth'

if os.path.exists(model_state_dict):
    network_state_dict = torch.load(model_state_dict)
    network.load_state_dict(network_state_dict)

if os.path.exists(optimizer_state_dict):
    optimizer_state_dict = torch.load(optimizer_state_dict)
    optimizer.load_state_dict(optimizer_state_dict)                      



# Train
#train(n_epochs,network,optimizer)


def image_classifier(inp):
    input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
    with torch.no_grad():

        prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
        #pred_number = prediction.data.max(1, keepdim=True)[1]
        sorted_prediction = torch.sort(prediction,descending=True)
        confidences={}
        for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
            confidences.update({s:v})
        return confidences

TITLE = "MNIST Adversarial: Try to fool the MNIST model"
description = """This project is about dynamic adversarial data collection (DADC). 
The basic idea is to do data collection, but specifically collect “adversarial data”, the kind of data that is difficult for a model to predict correctly. 
This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label.

### What to do:
- Draw a number from 0-9.
- Click `Submit` and see the model's prediciton.
- If the model misclassifies it, Flag that example.
- This will add your (adversarial) example to a dataset on which the model will be trained later.
"""
gr.Interface(fn=image_classifier, 
            inputs=gr.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil"),
            outputs=gr.outputs.Label(num_top_classes=10),
            allow_flagging="manual",
            title = TITLE,
            description=description).launch()