File size: 16,511 Bytes
80442c0
 
 
 
866cafe
f240072
80442c0
 
 
f240072
866cafe
 
 
f240072
80442c0
 
866cafe
 
 
80442c0
 
 
 
 
35ee063
866cafe
 
f240072
 
 
 
 
866cafe
 
f240072
 
 
866cafe
 
 
 
 
f240072
80442c0
 
 
866cafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db7f81
 
866cafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80442c0
 
 
866cafe
 
 
 
 
 
80442c0
866cafe
80442c0
866cafe
 
80442c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866cafe
80442c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866cafe
 
35ee063
 
866cafe
80442c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f240072
 
 
 
 
 
 
80442c0
 
 
 
 
 
 
 
 
 
 
820ea84
 
866cafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f240072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866cafe
f240072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866cafe
 
 
 
 
 
 
 
 
35ee063
866cafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ee063
866cafe
 
f240072
35ee063
820ea84
866cafe
 
 
 
 
 
 
 
 
 
 
f240072
866cafe
 
f240072
866cafe
 
 
 
f240072
35ee063
f240072
dc69193
866cafe
 
 
f240072
 
 
 
 
866cafe
f240072
 
 
866cafe
35ee063
f240072
 
 
 
4db7f81
 
2dc35ff
 
4db7f81
2dc35ff
 
 
f240072
 
2dc35ff
866cafe
f240072
866cafe
 
 
f240072
35ee063
f240072
866cafe
 
 
 
 
 
2dc35ff
 
 
 
866cafe
35ee063
866cafe
 
 
f240072
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import torch
import gradio as gr
import torchvision
from PIL import Image
from utils import *
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from huggingface_hub import Repository, upload_file
from torch.utils.data import Dataset
import numpy as np
from collections import Counter 




n_epochs = 10
batch_size_train = 128
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
TRAIN_CUTOFF = 10
WHAT_TO_DO=WHAT_TO_DO.format(num_samples=TRAIN_CUTOFF)
METRIC_PATH = './metrics.json'
REPOSITORY_DIR = "data"
LOCAL_DIR = 'data_local'
os.makedirs(LOCAL_DIR,exist_ok=True)




HF_TOKEN = os.getenv("HF_TOKEN")

HF_DATASET ="mnist-adversarial-dataset"
DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}"
repo = Repository(
    local_dir="data_mnist", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
repo.git_pull()

torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)


class MNISTAdversarial_Dataset(Dataset):

    def __init__(self,data_dir,transform):
        repo.git_pull()
        self.data_dir = os.path.join(data_dir,'data')
        self.transform = transform
        files = [f.name for f in os.scandir(self.data_dir)]
        self.images = []
        self.numbers = []
        for f in files:
            self.FOLDER = os.path.join(os.path.join(self.data_dir,f))
            
            metadata_path = os.path.join(self.FOLDER,'metadata.jsonl')

            image_path =os.path.join(self.FOLDER,'image.png')
            if os.path.exists(image_path) and os.path.exists(metadata_path): 
                img = Image.open(image_path)
                self.images.append(img)
                metadata = read_json_lines(metadata_path)
                self.numbers.append(metadata[0]['correct_number'])
        assert len(self.images)==len(self.numbers), f"Length of images and numbers must be the same. Got {len(self.images)} for images and {len(self.numbers)} for numbers."
    def __len__(self):
        return len(self.images)
    
    def __getitem__(self,idx):
        img, label = self.images[idx], self.numbers[idx]
        img = self.transform(img)
        return img, label

class MNISTCorrupted_By_Digit(Dataset):
    def __init__(self,transform,digit,limit=30):
        self.transform = transform
        self.digit = digit
        corrupted_dir="./mnist_c"
        files = [f.name for f in os.scandir(corrupted_dir)]
        images = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_images.npy')) for f in files]
        labels = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_labels.npy')) for f in files]
        self.data = np.vstack(images)
        self.labels = np.hstack(labels)
        
        assert (self.data.shape[0] == self.labels.shape[0])
        
        mask = self.labels == self.digit

        data_masked  = self.data[mask] 
        # Just to be on the safe side, ensure limit is more than the minimum
        limit = min(limit,data_masked.shape[0])

        self.data_for_use = data_masked[:limit]
        self.labels_for_use = self.labels[mask][:limit]
        assert (self.data_for_use.shape[0] == self.labels_for_use.shape[0])

    def __len__(self):
        return len(self.data_for_use)
    def __getitem__(self,idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()

        image = self.data_for_use[idx]
        label = self.labels_for_use[idx]
        if self.transform:
            image_pil = torchvision.transforms.ToPILImage()(image) # Need to transform to PIL before using default transforms
            image = self.transform(image_pil) 

        return image, label





class MNISTCorrupted(Dataset):
    def __init__(self,transform):
        self.transform = transform
        corrupted_dir="./mnist_c"
        files = [f.name for f in os.scandir(corrupted_dir)]
        images = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_images.npy'))[:200] for f in files]
        labels = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_labels.npy'))[:200] for f in files]
        self.data = np.vstack(images)
        self.labels = np.hstack(labels)

        assert (self.data.shape[0] == self.labels.shape[0])

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()

        image = self.data[idx]
        label = self.labels[idx]
        if self.transform:
            image_pil = torchvision.transforms.ToPILImage()(image) # Need to transform to PIL before using default transforms
            image = self.transform(image_pil) 

        return image, label



TRAIN_TRANSFORM = torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])

'''
train_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('files/', train=True, download=True,
                             transform=TRAIN_TRANSFORM),
  batch_size=batch_size_train, shuffle=True)
'''

test_loader = torch.utils.data.DataLoader(MNISTCorrupted(TRAIN_TRANSFORM),
                                            batch_size=batch_size_test, shuffle=False)


# Source: https://nextjournal.com/gkoehler/pytorch-mnist
class MNIST_Model(nn.Module):
    def __init__(self):
        super(MNIST_Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


def train(epochs,network,optimizer,train_loader):
    
    train_losses=[]
    network.train()
    for epoch in range(epochs):
        for batch_idx, (data, target) in enumerate(train_loader):
            optimizer.zero_grad()
            output = network(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
                train_losses.append(loss.item())
        
                torch.save(network.state_dict(), 'model.pth')
                torch.save(optimizer.state_dict(), 'optimizer.pth')

def test():
    test_losses=[]
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
            test_loss /= len(test_loader.dataset)
        test_losses.append(test_loss)
        acc = 100. * correct / len(test_loader.dataset)
        acc = acc.item()
        test_metric = '〽Current test metric -> Avg. loss: `{:.4f}`, Accuracy: `{:.0f}%`\n'.format(
        test_loss,acc)
        return test_metric,acc



random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)

network = MNIST_Model()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)        


model_state_dict = 'model.pth'
optimizer_state_dict = 'optmizer.pth'

if os.path.exists(model_state_dict):
    network_state_dict = torch.load(model_state_dict)
    network.load_state_dict(network_state_dict)

if os.path.exists(optimizer_state_dict):
    optimizer_state_dict = torch.load(optimizer_state_dict)
    optimizer.load_state_dict(optimizer_state_dict)                      



# Train
#train(n_epochs,network,optimizer)


def image_classifier(inp):
    """
    It takes an image as input and returns a dictionary of class labels and their corresponding
    confidence scores.
    
    :param inp: the image to be classified
    :return: A dictionary of the class index and the confidence value.
    """
    input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
    with torch.no_grad():

        prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
        #pred_number = prediction.data.max(1, keepdim=True)[1]
        sorted_prediction = torch.sort(prediction,descending=True)
        confidences={}
        for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
            confidences.update({s:v})
        return confidences

def train_and_test():
    # Train for one epoch and test
    train_dataset = MNISTAdversarial_Dataset('./data_mnist',TRAIN_TRANSFORM)

    train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size_test, shuffle=True
                                             )
    train(n_epochs,network,optimizer,train_loader)
    test_metric,test_acc = test()

    if os.path.exists(METRIC_PATH):
        metric_dict = read_json(METRIC_PATH)
        metric_dict['all'] = metric_dict['all'] if 'all' in metric_dict else [] + [test_acc]
    else:
        metric_dict={}
        metric_dict['all'] = [test_acc] 

    for i in range(10):
        data_per_digit = MNISTCorrupted_By_Digit(TRAIN_TRANSFORM,i)
        dataloader_per_digit = torch.utils.data.DataLoader(data_per_digit,batch_size=len(data_per_digit), shuffle=False)
        data_per_digit, label_per_digit = iter(dataloader_per_digit).next()
        output = network(data_per_digit)
        pred = output.data.max(1, keepdim=True)[1]
        correct = pred.eq(label_per_digit.data.view_as(pred)).sum()
        acc = 100. * correct / len(data_per_digit)
        acc=acc.item()
        if os.path.exists(METRIC_PATH):
            metric_dict[str(i)].append(acc) 
        else:
            metric_dict[str(i)] = [acc] 

    dump_json(thing=metric_dict,file=METRIC_PATH)    
    return test_metric

def flag(input_image,correct_result,adversarial_number):

    adversarial_number = 0 if None else adversarial_number

    metadata_name = get_unique_name()
    SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
    os.makedirs(SAVE_FILE_DIR,exist_ok=True)
    image_output_filename = os.path.join(SAVE_FILE_DIR,'image.png')
    try:
        input_image.save(image_output_filename)
    except Exception:
        raise Exception(f"Had issues saving PIL image to file")    

    # Write metadata.json to file
    json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl')
    metadata= {'id':metadata_name,'file_name':'image.png',
                'correct_number':correct_result
                }
    
    dump_json(metadata,json_file_path)  
        
    # Simply upload the image file and metadata using the hub's upload_file
    # Upload the image
    repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'image.png'))
    
    _ = upload_file(path_or_fileobj = image_output_filename,
                path_in_repo =repo_image_path,
                repo_id=f'chrisjay/{HF_DATASET}',
                repo_type='dataset',
                token=HF_TOKEN
            ) 

    # Upload the metadata
    repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'metadata.jsonl'))
    _ = upload_file(path_or_fileobj = json_file_path,
                path_in_repo =repo_json_path,
                repo_id=f'chrisjay/{HF_DATASET}',
                repo_type='dataset',
                token=HF_TOKEN
            )        
    adversarial_number+=1
    output = f'<div> ✔ ({adversarial_number}) Successfully saved your adversarial data. </div>'
    repo.git_pull()
    length_of_dataset = len([f for f in os.scandir("./data_mnist/data")])
    test_metric = f"<html> {DEFAULT_TEST_METRIC} </html>"
    if length_of_dataset % TRAIN_CUTOFF ==0:
        test_metric_ = train_and_test()
        test_metric = f"<html> {test_metric_} </html>"
        output = f'<div> ✔ ({adversarial_number}) Successfully saved your adversarial data and trained the model on adversarial data! </div>'
    return output,adversarial_number

def get_number_dict(DATA_DIR):
    files = [f.name for f in os.scandir(DATA_DIR)]
    numbers = [read_json_lines(os.path.join(os.path.join(DATA_DIR,f),'metadata.jsonl'))[0]['correct_number'] for f in files]
    numbers_count = Counter(numbers)
    numbers_count_keys = list(numbers_count.keys())
    numbers_count_values = [numbers_count[k] for k in numbers_count_keys]
    return numbers_count_keys,numbers_count_values



def get_statistics():
    model_state_dict = 'model.pth'
    optimizer_state_dict = 'optmizer.pth'

    if os.path.exists(model_state_dict):
        network_state_dict = torch.load(model_state_dict)
        network.load_state_dict(network_state_dict)

    if os.path.exists(optimizer_state_dict):
        optimizer_state_dict = torch.load(optimizer_state_dict)
        optimizer.load_state_dict(optimizer_state_dict)                      
    repo.git_pull()
    DATA_DIR = './data_mnist/data'
    numbers_count_keys,numbers_count_values = get_number_dict(DATA_DIR)

    STATS_EXPLANATION_ = STATS_EXPLANATION.format(num_adv_samples = sum(numbers_count_values))
    
    plt_digits = plot_bar(numbers_count_values,numbers_count_keys,'Number of adversarial samples',"Digit",f"Distribution of adversarial samples over digits")
    
    fig_d, ax_d = plt.subplots(tight_layout=True)

    if os.path.exists(METRIC_PATH):
        metric_dict = read_json(METRIC_PATH)
        for i in range(10):
            try:    
                x_i = [i+1 for i in range(len(metric_dict[str(i)]))]
                ax_d.plot(x_i, metric_dict[str(i)],label=str(i))
            except Exception:
                continue
        dump_json(thing=metric_dict,file=METRIC_PATH)    
    else:
        metric_dict={}

    fig_d.legend()
    ax_d.set(xlabel='Adversarial train steps', ylabel='MNIST_C Test Accuracy',title="Test Accuracy over digits per train step")

    done_html =  """<div style="color: green">
                <p> ✅ Statistics loaded successfully!</p>
                </div>
               """ 

    return plt_digits,fig_d,done_html,STATS_EXPLANATION_    




def main():
    #block = gr.Blocks(css=BLOCK_CSS)
    block = gr.Blocks()

    with block:
        gr.Markdown(TITLE)
        gr.Markdown(description)

        with gr.Tabs():
            with gr.TabItem('MNIST'):
                gr.Markdown(WHAT_TO_DO)
                #test_metric = gr.outputs.HTML("")
                with gr.Row():     
            

                    image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil")
                    label_output = gr.outputs.Label(num_top_classes=2)


                submit = gr.Button("Submit")
                
                gr.Markdown(MODEL_IS_WRONG)
                
                number_dropdown = gr.Dropdown(choices=[i for i in range(10)],type='value',default=None,label="What was the correct prediction?") 


                flag_btn = gr.Button("Flag")

                output_result = gr.outputs.HTML()
                adversarial_number = gr.Variable(value=0)


                submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
                flag_btn.click(flag,inputs=[image_input,number_dropdown,adversarial_number],outputs=[output_result,adversarial_number])
                
            with gr.TabItem('Dashboard') as dashboard:
                notification = gr.HTML("""<div style="color: green">
                                        <p> ⌛ Creating statistics... </p>
                                        </div>
                                    """)

                stats = gr.Markdown()
                stat_adv_image =gr.Plot(type="matplotlib")
                gr.Markdown(DASHBOARD_EXPLANATION)
                test_results=gr.Plot(type="matplotlib")

            dashboard.select(get_statistics,inputs=[],outputs=[stat_adv_image,test_results,notification,stats])



    block.launch()  
        
     


if __name__ == "__main__":
    main()