Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,034 Bytes
1d2d49e 8f02a91 1d2d49e fa328d5 1d2d49e e0f5977 125e8b7 e0f5977 125e8b7 e0f5977 1d2d49e fa328d5 e0f5977 fa328d5 e0f5977 fa328d5 e0f5977 fa328d5 e0f5977 b3fb382 e0f5977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
try:
import spaces
from spaces import GPU
except ImportError:
def GPU(*args, **kwargs):
if len(args) == 1 and callable(args[0]):
# Used as @GPU without parameters
return args[0]
# Used as @GPU() with parameters
def decorator(func):
async def wrapper(*func_args, **func_kwargs):
return await func(*func_args, **func_kwargs) if asyncio.iscoroutinefunction(func) else func(*func_args, **func_kwargs)
return wrapper
return decorator
import torch
import timm
from torch import nn, tensor
from torchvision import transforms
from functools import partial
import fastcore.all as fc
from PIL import Image
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, AutoencoderKL
from pathlib import Path
import torch.nn.functional as F
import gc
import sys
import traceback
from tqdm.auto import tqdm
import logging
import numpy as np
# Constants
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DIMENSION = 512
MODEL_ID = "stabilityai/stable-diffusion-2-1"
# Helper Classes
class Hook():
def __init__(self, m, f): self.hook = m.register_forward_hook(partial(f, self))
def remove(self): self.hook.remove()
def __del__(self): self.remove()
class Hooks(list):
def __init__(self, ms, f): super().__init__([Hook(m, f) for m in ms])
def __enter__(self, *args): return self
def __exit__ (self, *args): self.remove()
def __del__(self): self.remove()
def __delitem__(self, i):
self[i].remove()
super().__delitem__(i)
def remove(self):
for h in self: h.remove()
# Helper Functions
def get_features(hook, mod, inp, outp):
hook.features = outp.clone()
def normalize(im):
imagenet_mean = tensor([0.485, 0.456, 0.406])[:,None,None].to(im.device)
imagenet_std = tensor([0.229, 0.224, 0.225])[:,None,None].to(im.device)
return (im - imagenet_mean) / imagenet_std
def pil_to_latent(input_im, vae):
with torch.no_grad():
latent = vae.encode(transforms.ToTensor()(input_im).unsqueeze(0).to(DEVICE).half()*2-1)
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents, vae):
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def calc_grams(img):
return torch.einsum('chw, dhw -> cd', img, img) / (img.shape[-2]*img.shape[-1])
def clean_mem():
if hasattr(sys, 'last_traceback'):
traceback.clear_frames(sys.last_traceback)
gc.collect()
with torch.cuda.device(DEVICE):
torch.cuda.empty_cache()
# Model Setup Functions
def init_models():
model_id = MODEL_ID
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
torch_dtype=torch.float16
).to(DEVICE)
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
scheduler=scheduler,
revision="fp16",
torch_dtype=torch.float16,
safety_checker=None
).to(DEVICE)
return pipe, vae, scheduler
def setup_vgg():
vgg16 = timm.create_model('vgg16', pretrained=True).to(DEVICE).features
layers = [i-1 for i,m in enumerate(vgg16.children()) if isinstance(m,nn.MaxPool2d)]
vgg16_layers = [m for i,m in enumerate(vgg16) if i in layers]
return vgg16, vgg16_layers
# Loss Classes
class ContentLossToTarget():
def __init__(self, target_im, vgg16, vgg16_layers, layer_weights=(1, 1, 0, 0, 0)):
self.vgg16 = vgg16
self.vgg16_layers = vgg16_layers
self.layer_weights = layer_weights
with torch.no_grad():
x = normalize(target_im.squeeze())
with Hooks(vgg16_layers, partial(get_features)) as hooks:
vgg16(x)
self.target_features = [h.features for h in hooks]
def __call__(self, input_im):
with Hooks(self.vgg16_layers, partial(get_features)) as hooks:
x = normalize(input_im.squeeze())
self.vgg16(x)
image_features = [h.features for h in hooks]
return sum(abs(f1-f2).mean()*w for f1, f2, w in
zip(image_features, self.target_features, self.layer_weights))
class StyleLossToTarget():
def __init__(self, target_im, vgg16, vgg16_layers, layer_weights=(1, 1, 1, 1, 1)):
self.vgg16 = vgg16
self.vgg16_layers = vgg16_layers
self.layer_weights = layer_weights
with torch.no_grad():
x = normalize(target_im.squeeze())
with Hooks(vgg16_layers, partial(get_features)) as hooks:
vgg16(x)
self.target_features = [h.features for h in hooks]
def __call__(self, input_im):
with Hooks(self.vgg16_layers, partial(get_features)) as hooks:
x = normalize(input_im.squeeze())
self.vgg16(x)
image_features = [h.features for h in hooks]
return sum(abs(calc_grams(f1)-calc_grams(f2)).mean()*w for f1, f2, w in
zip(image_features, self.target_features, self.layer_weights))
# Main Processing Function
@GPU
def process_images(init_image, style_image, prompt, negative_prompt, inference_steps, strength,
style_g1, style_g2, style_g3, style_g4, style_g5,
content_g1, content_g2, content_g3, content_g4, content_g5,
latent_guidance):
try:
# Initialize models
pipe, vae, scheduler = init_models()
vgg16, vgg16_layers = setup_vgg()
# Process images
init_image = init_image.resize((DIMENSION, DIMENSION))
style_image = style_image.resize((DIMENSION, DIMENSION))
# Transform images
style_transform = transforms.Compose([transforms.ToTensor()])
style_tensor = style_transform(style_image)
init_tensor = style_transform(init_image)
# Initialize latents
style_latents = pil_to_latent(style_image, vae)
init_image_latents = pil_to_latent(init_image, vae)
# Normalize tensors
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
mean_tensor = torch.Tensor(mean).view(1,1,-1).permute(2, 0, 1).to(DEVICE)
std_tensor = torch.Tensor(std).view(1,1,-1).permute(2, 0, 1).to(DEVICE)
norm_style_tensor = (style_tensor.to(DEVICE) - mean_tensor) / std_tensor
norm_style_tensor = norm_style_tensor.unsqueeze(dim=0)
# Setup losses
# style_loss = StyleLossToTarget(norm_style_tensor, vgg16, vgg16_layers,
# layer_weights=(style_guidance**2, style_guidance**2, style_guidance**2, 0, 0))
# content_loss = ContentLossToTarget(norm_style_tensor, vgg16, vgg16_layers,
# layer_weights=(0, content_guidance**2, content_guidance**2, content_guidance**2, 0))
# Setup losses with correct layer weights
# style_loss = StyleLossToTarget(
# norm_style_tensor,
# vgg16,
# vgg16_layers,
# layer_weights=(
# (style_guidance * 5)**2,
# (style_guidance * 5)**2,
# (style_guidance * 5)**2,
# 0,
# 0
# )
# )
# content_loss = ContentLossToTarget(
# norm_style_tensor,
# vgg16,
# vgg16_layers,
# layer_weights=(
# content_guidance,
# content_guidance,
# 0,
# 0,
# 0
# )
# )
# Setup losses with individual layer weights
style_loss = StyleLossToTarget(
norm_style_tensor,
vgg16,
vgg16_layers,
layer_weights=(
(style_g1 * 5)**2,
(style_g2 * 5)**2,
(style_g3 * 5)**2,
(style_g4 * 5)**2,
(style_g5 * 5)**2
)
)
content_loss = ContentLossToTarget(
norm_style_tensor,
vgg16,
vgg16_layers,
layer_weights=(
content_g1,
content_g2,
content_g3,
content_g4,
content_g5
)
)
# Prepare for inference
scheduler.set_timesteps(inference_steps)
offset = scheduler.config.get("steps_offset", 0)
start_step = int(inference_steps * strength) + offset
# Generate initial noise
generator = torch.Generator(device=DEVICE)
generator.manual_seed(42)
noise = torch.randn(
init_image_latents.shape,
generator=generator,
device=DEVICE,
dtype=torch.float16
)
# Add noise to input image
latents = scheduler.add_noise(
init_image_latents,
noise,
timesteps=torch.tensor([scheduler.timesteps[start_step]])
)
# Encode text embeddings
text_embeddings = pipe._encode_prompt(
prompt,
DEVICE,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt
)
# Initialize loss function
mae_loss = torch.nn.L1Loss()
# Denoising loop
timesteps = scheduler.timesteps
for i, t in enumerate(tqdm(scheduler.timesteps)):
# Expand latents for classifier free guidance
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# Predict noise
with torch.no_grad():
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings
).sample
# Perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + 7.5 * (noise_pred_text - noise_pred_uncond)
noise_pred = noise_pred/noise_pred.norm()*noise_pred_uncond.norm()
# Store current step
pipe.scheduler._step_index = i
#print(f"{i} of {inference_steps} - {start_step}")
if i > start_step:
if i < int(0.8 * inference_steps):
latents = latents.detach().requires_grad_()
current_step = pipe.scheduler._step_index
# print(f"Step {i} - Current scheduler step: {current_step}")
# print(f"Timestep t: {t}")
# print(f"Sigma: {scheduler.sigmas[i]}")
# Get prediction of original sample
step_output = scheduler.step(noise_pred, t, latents)
latents_x0 = step_output.pred_original_sample
# print(f"Latents x0 stats - Mean: {latents_x0.mean():.4f}, Std: {latents_x0.std():.4f}")
pipe.scheduler._step_index = current_step
# Process through VAE
latents_x0_vae = latents_x0.half()
denoised_images = vae.decode((1 / 0.18215) * latents_x0_vae).sample / 2 + 0.5
denoised_images = denoised_images.clamp(0, 1)
# Calculate losses
norm_image_tensor = (denoised_images.squeeze() - mean_tensor) / std_tensor
norm_image_tensor = norm_image_tensor.unsqueeze(dim=0)
# Debug print
# print(f"Step {i} - ", end='')
content_loss_scale = 17.6
loss = content_loss(norm_image_tensor) * content_loss_scale
# print(f"content_loss {loss.item()}")
style_loss_val = style_loss(norm_image_tensor) * 0.5
# print(f"style_loss_val {style_loss_val.item()}")
latent_loss_val = mae_loss(latents_x0, style_latents) * latent_guidance
# print(f"latent_loss_val {latent_loss_val.item()}")
loss += style_loss_val
loss += latent_loss_val
# print(f"loss {loss.item()}")
# Calculate and apply gradients
cond_grad = torch.autograd.grad(loss, latents)[0]
# print(f"Gradient stats - Mean: {cond_grad.mean():.4f}, Std: {cond_grad.std():.4f}")
latents = latents.detach() - cond_grad * scheduler.sigmas[i].to(DEVICE)**2
torch.cuda.empty_cache()
latents = scheduler.step(noise_pred, t, latents).prev_sample
# Decode final image
with torch.no_grad():
image = pipe.decode_latents(latents)
image = pipe.numpy_to_pil(image)[0]
clean_mem()
return image # Fixed - return the processed image
except Exception as e:
clean_mem()
raise RuntimeError(f"Error during processing: {str(e)}")
|