File size: 7,457 Bytes
378ef11
e0f5977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa328d5
 
 
 
 
e0f5977
fa328d5
 
 
 
 
 
 
 
 
 
 
 
 
e0f5977
 
 
 
 
 
 
 
fa328d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b097eea
 
e0f5977
fa328d5
 
e0f5977
fa328d5
e0f5977
fa328d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd5d90
4f8f689
 
fa328d5
 
e0f5977
 
 
 
 
 
 
 
 
fa328d5
 
 
 
 
 
 
 
 
 
 
e0f5977
fa328d5
e0f5977
fa328d5
e0f5977
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#import spaces
import gradio as gr
from PIL import Image
import torch
import os
import gc
from pathlib import Path

from model import (
    process_images,
    DEVICE,
    DIMENSION,
    MODEL_ID
)

import logging
logging.disable(logging.WARNING)

def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("""

        # Diffusion Style Transfer with Feature, Style, and Latent Loss



        This tool combines Stable Diffusion with VGG feature control and latent matching to create styled images. 

        """)
        with gr.Row():
            with gr.Column(scale=1):
                init_image = gr.Image(
                    label="Initial Image",
                    type="pil",
                    height=384
                )
                style_image = gr.Image(
                    label="Style Image",
                    type="pil",
                    height=384
                )
            
            with gr.Column(scale=1):
                prompt = gr.Textbox(
                    label="Prompt",
                    lines=2
                )
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="extra details, jpeg artifacts, chromatic aberration"
                )
                with gr.Row():
                    inference_steps = gr.Slider(
                        minimum=20,
                        maximum=100,
                        value=60,
                        step=1,
                        label="Inference Steps"
                    )
                    strength = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.2,
                        step=0.05,
                        label="Initial Image Strength"
                    )
                
                gr.Markdown("### Gram Matrix Based Style Guidance Scales")
                with gr.Row():
                    style_guidance_1 = gr.Slider(minimum=0.0, maximum=2.0, value=1., step=0.1, label="Texture Fundamentals")
                with gr.Row():
                    style_guidance_2 = gr.Slider(minimum=0.0, maximum=2.0, value=1., step=0.1, label="Pattern Assembly")
                with gr.Row():
                    style_guidance_3 = gr.Slider(minimum=0.0, maximum=2.0, value=1., step=0.1, label="Style Motifs")
                with gr.Row():
                    style_guidance_4 = gr.Slider(minimum=0.0, maximum=2.0, value=1., step=0.1, label="Compositional Grammar")
                with gr.Row():
                    style_guidance_5 = gr.Slider(minimum=0.0, maximum=2.0, value=1., step=0.1, label="Style Signature")

                gr.Markdown("### Feature/Perceptual Based Content Guidance Scales")
                with gr.Row():
                    content_guidance_1 = gr.Slider(minimum=0.0, maximum=20, value=1.0, step=0.5, label="Edge Detector")
                with gr.Row():
                    content_guidance_2 = gr.Slider(minimum=0.0, maximum=20, value=1.0, step=0.5, label="Shape Assembler")
                with gr.Row():
                    content_guidance_3 = gr.Slider(minimum=0.0, maximum=20, value=0.0, step=0.5, label="Part Recognizer")
                with gr.Row():
                    content_guidance_4 = gr.Slider(minimum=0.0, maximum=20, value=0.0, step=0.5, label="Object Former")
                with gr.Row():
                    content_guidance_5 = gr.Slider(minimum=0.0, maximum=20, value=0.0, step=0.5, label="Scene Integrator")

                gr.Markdown("### Latent Space Guidance")
                latent_guidance = gr.Slider(
                    minimum=0,
                    maximum=1000,
                    value=24, 
                    step=1,
                    label="Latent Space Closeness",
                    info="Controls how closely the output matches the style image in latent space"
                )

                run_button = gr.Button("Generate")
            
            with gr.Column(scale=1):
                output = gr.Image(
                    label="Output",
                    height=384
                )

            gr.Markdown("""

        The process works in three main steps:



        1. **Initial Image Processing**

        - Your input image is partially noised based on the 'Initial Image Strength'

        - Higher strength means more noise, allowing more creative freedom but less preservation of original content



        2. **Diffusion Denoising**

        - The image is gradually denoised using Stable Diffusion

        - The process is guided by your prompt and negative prompt

        - Takes place over the specified number of inference steps



        3. **Multi-Level Style and Content Control**

        - During denoising, three types of guidance shape the output:



        **Style Features** (VGG16 layers):

        * Texture Fundamentals: Basic textures and edges

        * Pattern Assembly: Repeated elements and patterns

        * Style Motifs: Distinctive style elements

        * Compositional Grammar: Arrangement of elements

        * Style Signature: Overall artistic style

        

        **Content Features** (VGG16 layers):

        * Edge Detector: Basic lines and boundaries

        * Shape Assembler: Simple geometric forms

        * Part Recognizer: Complex shapes and parts

        * Object Former: Complete object representations

        * Scene Integrator: Overall composition



        **Latent Space Matching**:

        * Controls how closely the output matches the style image in Stable Diffusion's latent space

        * Higher values enforce stronger similarity to the style image's overall structure

        * Lower values allow more freedom for the other guidance systems



        ### Tips for Best Results

        - Start with lower strength (0.2-0.4) to preserve more of your initial image

        - Use higher style guidance for stronger artistic effect

        - Focus content guidance on middle layers for best object preservation

        - Balance latent loss weight:

        * Higher (30-50) for closer style image matching

        * Lower (10-20) for more creative interpretations

                        

        [Read more here in my blog post](http://christhomas.co.uk/blog/2025/02/17/how-to-guide-stable-diffusion-with-vgg-features-style-loss-and-latent-mae/)   

        [Github repo](https://github.com/chris-thomas/steering-stable-diffusion)                                  

        """)
        
        run_button.click(
            fn=process_images,
            inputs=[
                init_image,
                style_image,
                prompt,
                negative_prompt,
                inference_steps,
                strength,
                style_guidance_1,
                style_guidance_2,
                style_guidance_3,
                style_guidance_4,
                style_guidance_5,
                content_guidance_1,
                content_guidance_2,
                content_guidance_3,
                content_guidance_4,
                content_guidance_5,
                latent_guidance
            ],
            outputs=output
        )

    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()