Spaces:
Runtime error
Runtime error
File size: 14,975 Bytes
ddaab9d 69420c9 ddaab9d 69420c9 ddaab9d b88e069 ddaab9d 69420c9 4975443 69420c9 ddaab9d 69420c9 ddaab9d 69420c9 ddaab9d 69420c9 ddaab9d 69420c9 ddaab9d c9b7234 ddaab9d ee42a6b ddaab9d ee42a6b ddaab9d ee42a6b ddaab9d ee42a6b ddaab9d 4c7dc89 435ddbc 65665c1 b88e069 4c7dc89 435ddbc 65665c1 b88e069 4c7dc89 b88e069 4c7dc89 ddaab9d 4c7dc89 ddaab9d 435ddbc 65665c1 ddaab9d b88e069 ddaab9d 69420c9 ee42a6b 4c7dc89 ee42a6b ddaab9d ee42a6b 4c7dc89 ddaab9d 4c7dc89 ddaab9d 4c7dc89 ddaab9d 4c7dc89 65665c1 ddaab9d 69420c9 4c7dc89 69420c9 435ddbc 65665c1 4c7dc89 69420c9 4c7dc89 69420c9 435ddbc 65665c1 4c7dc89 69420c9 ddaab9d 69420c9 ddaab9d b88e069 65665c1 b88e069 ddaab9d 4c7dc89 69420c9 ddaab9d ee42a6b ddaab9d 4c7dc89 ddaab9d 4c7dc89 ee42a6b 4c7dc89 ee42a6b ddaab9d 4c7dc89 ddaab9d 4c7dc89 ee42a6b 4c7dc89 69420c9 4c7dc89 69420c9 435ddbc 65665c1 69420c9 435ddbc 65665c1 4c7dc89 69420c9 ee42a6b b88e069 4c7dc89 ddaab9d ee42a6b ddaab9d b88e069 ddaab9d 4c7dc89 435ddbc 4c7dc89 ddaab9d ee42a6b ddaab9d ee42a6b b88e069 ddaab9d ee42a6b ddaab9d 4c7dc89 b88e069 ee42a6b ddaab9d b88e069 ddaab9d ee42a6b b88e069 ddaab9d 4c7dc89 b88e069 ee42a6b ddaab9d b88e069 ddaab9d 50728a6 69420c9 50728a6 b88e069 ee42a6b b88e069 ddaab9d b88e069 ee42a6b b88e069 ddaab9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# Code credit: [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM).
import torch
import gradio as gr
import numpy as np
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.onnx import SamPredictorONNX
from PIL import ImageDraw
from utils.tools_gradio import fast_process
import copy
import argparse
from PIL import Image
# Use ONNX to speed up the inference.
ENABLE_ONNX = False
parser = argparse.ArgumentParser(
description="Host EdgeSAM as a local web service."
)
parser.add_argument(
"--checkpoint",
default="weights/edge_sam_3x.pth",
type=str,
help="The path to the PyTorch checkpoint of EdgeSAM."
)
parser.add_argument(
"--encoder-onnx-path",
default="weights/edge_sam_3x_encoder.onnx",
type=str,
help="The path to the ONNX model of EdgeSAM's encoder."
)
parser.add_argument(
"--decoder-onnx-path",
default="weights/edge_sam_3x_decoder.onnx",
type=str,
help="The path to the ONNX model of EdgeSAM's decoder."
)
parser.add_argument(
"--server-name",
default="0.0.0.0",
type=str,
help="The server address that this demo will be hosted on."
)
parser.add_argument(
"--port",
default=8080,
type=int,
help="The port that this demo will be hosted on."
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if ENABLE_ONNX:
predictor = SamPredictorONNX(args.encoder_onnx_path, args.decoder_onnx_path)
else:
sam = sam_model_registry["edge_sam"](checkpoint=args.checkpoint, upsample_mode="bicubic")
sam = sam.to(device=device)
sam.eval()
predictor = SamPredictor(sam)
examples = [
["assets/1.jpeg"],
["assets/2.jpeg"],
["assets/3.jpeg"],
["assets/4.jpeg"],
["assets/5.jpeg"],
["assets/6.jpeg"],
["assets/7.jpeg"],
["assets/8.jpeg"],
["assets/9.jpeg"],
["assets/10.jpeg"],
["assets/11.jpeg"],
["assets/12.jpeg"],
["assets/13.jpeg"],
["assets/14.jpeg"],
["assets/15.jpeg"],
["assets/16.jpeg"]
]
# Description
title = "<center><strong><font size='8'>EdgeSAM<font></strong> <a href='https://github.com/chongzhou96/EdgeSAM'><font size='6'>[GitHub]</font></a> </center>"
description_p = """ # Instructions for point mode
1. Upload an image or click one of the provided examples.
2. Select the point type.
3. Click once or multiple times on the image to indicate the object of interest.
4. The Clear button clears all the points.
5. The Reset button resets both points and the image.
"""
description_b = """ # Instructions for box mode
1. Upload an image or click one of the provided examples.
2. Click twice on the image (diagonal points of the box).
3. The Clear button clears the box.
4. The Reset button resets both the box and the image.
"""
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def reset(session_state):
session_state['coord_list'] = []
session_state['label_list'] = []
session_state['box_list'] = []
session_state['ori_image'] = None
session_state['image_with_prompt'] = None
session_state['feature'] = None
session_state['input_size'] = None
session_state['original_size'] = None
return None, None, None, session_state
def reset_all(session_state):
session_state['coord_list'] = []
session_state['label_list'] = []
session_state['box_list'] = []
session_state['ori_image'] = None
session_state['image_with_prompt'] = None
session_state['feature'] = None
session_state['input_size'] = None
session_state['original_size'] = None
return None, None, None, None, None, None, session_state
def clear(session_state):
session_state['coord_list'] = []
session_state['label_list'] = []
session_state['box_list'] = []
session_state['image_with_prompt'] = copy.deepcopy(session_state['ori_image'])
return session_state['ori_image'], None, None, session_state
def on_image_upload(
image,
session_state,
input_size=1024
):
session_state['coord_list'] = []
session_state['label_list'] = []
session_state['box_list'] = []
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
session_state['ori_image'] = copy.deepcopy(image)
session_state['image_with_prompt'] = copy.deepcopy(image)
print("Image changed")
nd_image = np.array(image)
session_state['feature'], session_state['input_size'], session_state['original_size'] = predictor.set_image(nd_image)
return image, None, None, session_state
def convert_box(xyxy):
min_x = min(xyxy[0][0], xyxy[1][0])
max_x = max(xyxy[0][0], xyxy[1][0])
min_y = min(xyxy[0][1], xyxy[1][1])
max_y = max(xyxy[0][1], xyxy[1][1])
xyxy[0][0] = min_x
xyxy[1][0] = max_x
xyxy[0][1] = min_y
xyxy[1][1] = max_y
return xyxy
def segment_with_points(
label,
session_state,
evt: gr.SelectData,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=False,
):
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 5, (97, 217, 54) if label == "Positive" else (237, 34, 13)
session_state['coord_list'].append([x, y])
session_state['label_list'].append(1 if label == "Positive" else 0)
print(f"coord_list: {session_state['coord_list']}")
print(f"label_list: {session_state['label_list']}")
draw = ImageDraw.Draw(session_state['image_with_prompt'])
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
image = session_state['image_with_prompt']
print(f"image: {image.size}")
nd_image = np.array(session_state['ori_image'])
if ENABLE_ONNX:
coord_np = np.array(session_state['coord_list'])[None]
label_np = np.array(session_state['label_list'])[None]
masks, scores, _ = predictor.predict(
features=session_state['feature'],
input_size=session_state['input_size'],
original_size=session_state['original_size'],
point_coords=coord_np,
point_labels=label_np,
)
masks = masks.squeeze(0)
scores = scores.squeeze(0)
else:
coord_np = np.array(session_state['coord_list'])
label_np = np.array(session_state['label_list'])
masks, scores, logits = predictor.predict(
features=session_state['feature'],
input_size=session_state['input_size'],
original_size=session_state['original_size'],
point_coords=coord_np,
point_labels=label_np,
num_multimask_outputs=4,
use_stability_score=True
)
print(f'scores: {scores}')
area = masks.sum(axis=(1, 2))
print(f'area: {area}')
annotations = np.expand_dims(masks[scores.argmax()], axis=0)
seg = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
binary_mask = np.where(annotations[0] > 0.5, 255, 0).astype(np.uint8)
mask = Image.fromarray(binary_mask)
binary_mask = np.expand_dims(binary_mask, axis=2)
crop = Image.fromarray(np.concatenate((nd_image, binary_mask), axis=2), "RGBA")
return seg, mask, crop, session_state
def segment_with_box(
session_state,
evt: gr.SelectData,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=False,
):
x, y = evt.index[0], evt.index[1]
point_radius, point_color, box_outline = 5, (97, 217, 54), 5
box_color = (0, 255, 0)
if len(session_state['box_list']) == 0:
session_state['box_list'].append([x, y])
elif len(session_state['box_list']) == 1:
session_state['box_list'].append([x, y])
elif len(session_state['box_list']) == 2:
session_state['image_with_prompt'] = copy.deepcopy(session_state['ori_image'])
session_state['box_list'] = [[x, y]]
print(f"box_list: {session_state['box_list']}")
draw = ImageDraw.Draw(session_state['image_with_prompt'])
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
image = session_state['image_with_prompt']
if len(session_state['box_list']) == 2:
box = convert_box(session_state['box_list'])
xy = (box[0][0], box[0][1], box[1][0], box[1][1])
draw.rectangle(
xy,
outline=box_color,
width=box_outline
)
box_np = np.array(box)
if ENABLE_ONNX:
point_coords = box_np.reshape(2, 2)[None]
point_labels = np.array([2, 3])[None]
masks, _, _ = predictor.predict(
features=session_state['feature'],
input_size=session_state['input_size'],
original_size=session_state['original_size'],
point_coords=point_coords,
point_labels=point_labels,
)
annotations = masks[:, 0, :, :]
else:
masks, scores, _ = predictor.predict(
features=session_state['feature'],
input_size=session_state['input_size'],
original_size=session_state['original_size'],
box=box_np,
num_multimask_outputs=1,
)
annotations = masks
seg = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
binary_mask = np.where(annotations[0] > 0.5, 255, 0).astype(np.uint8)
mask = Image.fromarray(binary_mask)
binary_mask = np.expand_dims(binary_mask, axis=2)
crop = Image.fromarray(np.concatenate((session_state['ori_image'], binary_mask), axis=2), "RGBA")
return seg, mask, crop, session_state
return image, None, None, session_state
img_p = gr.Image(label="Input with points", type="pil")
img_b = gr.Image(label="Input with box", type="pil")
mask_p = gr.Image(label="Mask", type="pil", interactive=False)
crop_p = gr.Image(label="Cropped image", type="pil", interactive=False)
mask_b = gr.Image(label="Mask", type="pil", interactive=False)
crop_b = gr.Image(label="Cropped image", type="pil", interactive=False)
with gr.Blocks(css=css, title="EdgeSAM") as demo:
session_state = gr.State({
'coord_list': [],
'label_list': [],
'box_list': [],
'ori_image': None,
'image_with_prompt': None,
'feature': None
})
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode") as tab_p:
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_p.render()
with gr.Column(scale=1):
with gr.Row():
add_or_remove = gr.Radio(
["Positive", "Negative"],
value="Positive",
label="Point Type"
)
with gr.Column():
clear_btn_p = gr.Button("Clear", variant="secondary")
reset_btn_p = gr.Button("Reset", variant="secondary")
with gr.Row():
mask_p.render()
crop_p.render()
with gr.Row():
with gr.Column():
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[img_p, session_state],
outputs=[img_p, mask_p, crop_p, session_state],
examples_per_page=8,
fn=on_image_upload,
run_on_click=True
)
with gr.Column():
gr.Markdown(description_p)
with gr.Tab("Box mode") as tab_b:
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_b.render()
with gr.Row():
with gr.Column():
clear_btn_b = gr.Button("Clear", variant="secondary")
reset_btn_b = gr.Button("Reset", variant="secondary")
with gr.Row():
mask_b.render()
crop_b.render()
with gr.Row():
with gr.Column():
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[img_b, session_state],
outputs=[img_b, mask_b, crop_b, session_state],
examples_per_page=8,
fn=on_image_upload,
run_on_click=True
)
with gr.Column():
gr.Markdown(description_b)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"<center><img src='https://visitor-badge.laobi.icu/badge?page_id=chongzhou/edgesam' alt='visitors'></center>")
img_p.upload(on_image_upload, [img_p, session_state], [img_p, mask_p, crop_p, session_state])
img_p.select(segment_with_points, [add_or_remove, session_state], [img_p, mask_p, crop_p, session_state])
clear_btn_p.click(clear, [session_state], [img_p, mask_p, crop_p, session_state])
reset_btn_p.click(reset, [session_state], [img_p, mask_p, crop_p, session_state])
tab_p.select(fn=reset_all, inputs=[session_state], outputs=[img_p, mask_p, crop_p, img_b, mask_b, crop_b, session_state])
img_b.upload(on_image_upload, [img_b, session_state], [img_b, mask_b, crop_b, session_state])
img_b.select(segment_with_box, [session_state], [img_b, mask_b, crop_b, session_state])
clear_btn_b.click(clear, [session_state], [img_b, mask_b, crop_b, session_state])
reset_btn_b.click(reset, [session_state], [img_b, mask_b, crop_b, session_state])
tab_b.select(fn=reset_all, inputs=[session_state], outputs=[img_p, mask_p, crop_p, img_b, mask_b, crop_b, session_state])
demo.queue()
# demo.launch(server_name=args.server_name, server_port=args.port)
demo.launch() |