File size: 14,429 Bytes
cacb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------

from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.models.vision_transformer import PatchEmbed, Block, Mlp, DropPath

from util.pos_embed import get_2d_sincos_pos_embed

class MCCDecoderAttention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., args=None):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.args = args
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, unseen_size):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        attn = (q @ k.transpose(-2, -1)) * self.scale

        mask = torch.zeros((1, 1, N, N), device=attn.device)
        mask[:, :, :, -unseen_size:] = float('-inf')
        for i in range(unseen_size):
            mask[:, :, -(i + 1), -(i + 1)] = 0
        attn = attn + mask
        attn = attn.softmax(dim=-1)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class MCCDecoderBlock(nn.Module):

    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, args=None):
        super().__init__()
        self.args = args
        self.norm1 = norm_layer(dim)
        self.attn = MCCDecoderAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, args=args)
        self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x, unseen_size):
        x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), unseen_size)))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class XYZPosEmbed(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """
    def __init__(self, embed_dim):
        super().__init__()
        self.embed_dim = embed_dim

        self.two_d_pos_embed = nn.Parameter(
            torch.zeros(1, 64 + 1, embed_dim), requires_grad=False)  # fixed sin-cos embedding

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.win_size = 8

        self.pos_embed = nn.Linear(3, embed_dim)

        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads=12, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
            for _ in range(1)
        ])

        self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,))

        self.initialize_weights()

    def initialize_weights(self):
        torch.nn.init.normal_(self.cls_token, std=.02)

        two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=True)
        self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0))

        torch.nn.init.normal_(self.invalid_xyz_token, std=.02)

    def forward(self, seen_xyz, valid_seen_xyz):
        emb = self.pos_embed(seen_xyz)

        emb[~valid_seen_xyz] = 0.0
        emb[~valid_seen_xyz] += self.invalid_xyz_token

        B, H, W, C = emb.shape
        emb = emb.view(B, H // self.win_size, self.win_size, W // self.win_size, self.win_size, C)
        emb = emb.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.win_size * self.win_size, C)

        emb = emb + self.two_d_pos_embed[:, 1:, :]
        cls_token = self.cls_token + self.two_d_pos_embed[:, :1, :]

        cls_tokens = cls_token.expand(emb.shape[0], -1, -1)
        emb = torch.cat((cls_tokens, emb), dim=1)
        for _, blk in enumerate(self.blocks):
            emb = blk(emb)
        return emb[:, 0].view(B, (H // self.win_size) * (W // self.win_size), -1)


class DecodeXYZPosEmbed(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """
    def __init__(self, embed_dim):
        super().__init__()
        self.embed_dim = embed_dim
        self.pos_embed = nn.Linear(3, embed_dim)

    def forward(self, unseen_xyz):
        return self.pos_embed(unseen_xyz)


class MCC(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """
    def __init__(self,
                 img_size=224, patch_size=16, in_chans=3,
                 embed_dim=1024, depth=24, num_heads=16,
                 decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
                 mlp_ratio=4., norm_layer=nn.LayerNorm,
                 rgb_weight=1.0, occupancy_weight=1.0, args=None):
        super().__init__()

        self.rgb_weight = rgb_weight
        self.occupancy_weight = occupancy_weight
        self.args = args

        # --------------------------------------------------------------------------
        # encoder specifics
        self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.cls_token_xyz = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False)  # fixed sin-cos embedding

        self.xyz_pos_embed = XYZPosEmbed(embed_dim)

        self.blocks = nn.ModuleList([
            Block(
                embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
                drop_path=args.drop_path
            ) for i in range(depth)])

        self.blocks_xyz = nn.ModuleList([
            Block(
                embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
                drop_path=args.drop_path
            ) for i in range(depth)])

        self.norm = norm_layer(embed_dim)
        self.norm_xyz = norm_layer(embed_dim)
        self.cached_enc_feat = None

        # --------------------------------------------------------------------------
        # decoder specifics
        self.decoder_embed = nn.Linear(
            embed_dim * 2,
            decoder_embed_dim,
            bias=True
        )

        self.decoder_xyz_pos_embed = DecodeXYZPosEmbed(decoder_embed_dim)
        self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False)  # fixed sin-cos embedding

        self.decoder_blocks = nn.ModuleList([
            MCCDecoderBlock(
                decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
                drop_path=args.drop_path,
                args=args,
            ) for i in range(decoder_depth)])

        self.decoder_norm = norm_layer(decoder_embed_dim)
        if self.args.regress_color:
            self.decoder_pred = nn.Linear(decoder_embed_dim, 3 + 1, bias=True) # decoder to patch
        else:
            self.decoder_pred = nn.Linear(decoder_embed_dim, 256 * 3 + 1, bias=True) # decoder to patch

        self.loss_occupy = nn.BCEWithLogitsLoss()
        if self.args.regress_color:
            self.loss_rgb = nn.MSELoss()
        else:
            self.loss_rgb = nn.CrossEntropyLoss()

        self.initialize_weights()

    def initialize_weights(self):

        pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
        self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))

        # initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        w = self.patch_embed.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
        torch.nn.init.normal_(self.cls_token, std=.02)
        torch.nn.init.normal_(self.cls_token_xyz, std=.02)

        # initialize nn.Linear and nn.LayerNorm
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)


    def forward_encoder(self, x, seen_xyz, valid_seen_xyz):

        # get tokens
        x = self.patch_embed(x)
        x = x + self.pos_embed[:, 1:, :]
        y = self.xyz_pos_embed(seen_xyz, valid_seen_xyz)

        ##### forward E_XYZ #####
        # append cls token
        cls_token_xyz = self.cls_token_xyz
        cls_tokens_xyz = cls_token_xyz.expand(y.shape[0], -1, -1)

        y = torch.cat((cls_tokens_xyz, y), dim=1)
        # apply Transformer blocks
        for blk in self.blocks_xyz:
            y = blk(y)
        y = self.norm_xyz(y)

        ##### forward E_RGB #####
        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)

        x = torch.cat((cls_tokens, x), dim=1)
        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)

        # combine encodings
        x = torch.cat([x, y], dim=2)
        return x

    def forward_decoder(self, x, unseen_xyz):
        # embed tokens
        x = self.decoder_embed(x)
        x = x + self.decoder_pos_embed

        # 3D pos embed
        unseen_xyz = self.decoder_xyz_pos_embed(unseen_xyz)
        x = torch.cat([x, unseen_xyz], dim=1)

        # apply Transformer blocks
        for blk in self.decoder_blocks:
            x = blk(x, unseen_xyz.shape[1])

        x = self.decoder_norm(x)

        # predictor projection
        pred = self.decoder_pred(x)
        # remove cls & seen token
        pred = pred[:, -unseen_xyz.shape[1]:, :]

        return pred

    def forward_loss(self, pred, unseen_occupy, unseen_rgb):
        loss = self.loss_occupy(
            pred[:, :, :1].reshape((-1, 1)),
            unseen_occupy.reshape((-1, 1)).float()
        ) * self.occupancy_weight

        if unseen_occupy.sum() > 0:
            if self.args.regress_color:
                pred_rgb = pred[:, :, 1:][unseen_occupy.bool()]
                gt_rgb = unseen_rgb[unseen_occupy.bool()]
            else:
                pred_rgb = pred[:, :, 1:][unseen_occupy.bool()].reshape((-1, 256))
                gt_rgb = torch.round(unseen_rgb[unseen_occupy.bool()] * 255).long().reshape((-1,))

            rgb_loss = self.loss_rgb(pred_rgb, gt_rgb) * self.rgb_weight
            loss = loss + rgb_loss
        return loss


    def clear_cache(self):
        self.cached_enc_feat = None

    def forward(self, seen_images, seen_xyz, unseen_xyz, unseen_rgb, unseen_occupy, valid_seen_xyz,
                cache_enc=False):

        unseen_xyz = shrink_points_beyond_threshold(unseen_xyz, self.args.shrink_threshold)

        if self.cached_enc_feat is None:
            seen_images = preprocess_img(seen_images)
            seen_xyz = shrink_points_beyond_threshold(seen_xyz, self.args.shrink_threshold)
            latent = self.forward_encoder(seen_images, seen_xyz, valid_seen_xyz)

        if cache_enc:
            if self.cached_enc_feat is None:
                self.cached_enc_feat = latent
            else:
                latent = self.cached_enc_feat

        pred = self.forward_decoder(latent, unseen_xyz)
        loss = self.forward_loss(pred, unseen_occupy, unseen_rgb)
        return loss, pred


def get_mcc_model(**kwargs):
    return MCC(
        embed_dim=768, depth=12, num_heads=12,
        decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs
    )


def shrink_points_beyond_threshold(xyz, threshold):
    xyz = xyz.clone().detach()
    dist = (xyz ** 2.0).sum(axis=-1) ** 0.5
    affected = (dist > threshold) * torch.isfinite(dist)
    xyz[affected] = xyz[affected] * (
        threshold * (2.0 - threshold / dist[affected]) / dist[affected]
    )[..., None]
    return xyz


def preprocess_img(x):
    if x.shape[2] != 224:
        assert x.shape[2] == 800
        x = F.interpolate(
            x,
            scale_factor=224./800.,
            mode="bilinear",
        )
    resnet_mean = torch.tensor([0.485, 0.456, 0.406], device=x.device).reshape((1, 3, 1, 1))
    resnet_std = torch.tensor([0.229, 0.224, 0.225], device=x.device).reshape((1, 3, 1, 1))
    imgs_normed = (x - resnet_mean) / resnet_std
    return imgs_normed


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma