File size: 14,429 Bytes
cacb27a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import PatchEmbed, Block, Mlp, DropPath
from util.pos_embed import get_2d_sincos_pos_embed
class MCCDecoderAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., args=None):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.args = args
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, unseen_size):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
mask = torch.zeros((1, 1, N, N), device=attn.device)
mask[:, :, :, -unseen_size:] = float('-inf')
for i in range(unseen_size):
mask[:, :, -(i + 1), -(i + 1)] = 0
attn = attn + mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MCCDecoderBlock(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, args=None):
super().__init__()
self.args = args
self.norm1 = norm_layer(dim)
self.attn = MCCDecoderAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, args=args)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, unseen_size):
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), unseen_size)))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class XYZPosEmbed(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, embed_dim):
super().__init__()
self.embed_dim = embed_dim
self.two_d_pos_embed = nn.Parameter(
torch.zeros(1, 64 + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.win_size = 8
self.pos_embed = nn.Linear(3, embed_dim)
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads=12, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
for _ in range(1)
])
self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,))
self.initialize_weights()
def initialize_weights(self):
torch.nn.init.normal_(self.cls_token, std=.02)
two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=True)
self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0))
torch.nn.init.normal_(self.invalid_xyz_token, std=.02)
def forward(self, seen_xyz, valid_seen_xyz):
emb = self.pos_embed(seen_xyz)
emb[~valid_seen_xyz] = 0.0
emb[~valid_seen_xyz] += self.invalid_xyz_token
B, H, W, C = emb.shape
emb = emb.view(B, H // self.win_size, self.win_size, W // self.win_size, self.win_size, C)
emb = emb.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.win_size * self.win_size, C)
emb = emb + self.two_d_pos_embed[:, 1:, :]
cls_token = self.cls_token + self.two_d_pos_embed[:, :1, :]
cls_tokens = cls_token.expand(emb.shape[0], -1, -1)
emb = torch.cat((cls_tokens, emb), dim=1)
for _, blk in enumerate(self.blocks):
emb = blk(emb)
return emb[:, 0].view(B, (H // self.win_size) * (W // self.win_size), -1)
class DecodeXYZPosEmbed(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, embed_dim):
super().__init__()
self.embed_dim = embed_dim
self.pos_embed = nn.Linear(3, embed_dim)
def forward(self, unseen_xyz):
return self.pos_embed(unseen_xyz)
class MCC(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self,
img_size=224, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm,
rgb_weight=1.0, occupancy_weight=1.0, args=None):
super().__init__()
self.rgb_weight = rgb_weight
self.occupancy_weight = occupancy_weight
self.args = args
# --------------------------------------------------------------------------
# encoder specifics
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.cls_token_xyz = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.xyz_pos_embed = XYZPosEmbed(embed_dim)
self.blocks = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path
) for i in range(depth)])
self.blocks_xyz = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.norm_xyz = norm_layer(embed_dim)
self.cached_enc_feat = None
# --------------------------------------------------------------------------
# decoder specifics
self.decoder_embed = nn.Linear(
embed_dim * 2,
decoder_embed_dim,
bias=True
)
self.decoder_xyz_pos_embed = DecodeXYZPosEmbed(decoder_embed_dim)
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
self.decoder_blocks = nn.ModuleList([
MCCDecoderBlock(
decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path,
args=args,
) for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
if self.args.regress_color:
self.decoder_pred = nn.Linear(decoder_embed_dim, 3 + 1, bias=True) # decoder to patch
else:
self.decoder_pred = nn.Linear(decoder_embed_dim, 256 * 3 + 1, bias=True) # decoder to patch
self.loss_occupy = nn.BCEWithLogitsLoss()
if self.args.regress_color:
self.loss_rgb = nn.MSELoss()
else:
self.loss_rgb = nn.CrossEntropyLoss()
self.initialize_weights()
def initialize_weights(self):
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.cls_token_xyz, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, x, seen_xyz, valid_seen_xyz):
# get tokens
x = self.patch_embed(x)
x = x + self.pos_embed[:, 1:, :]
y = self.xyz_pos_embed(seen_xyz, valid_seen_xyz)
##### forward E_XYZ #####
# append cls token
cls_token_xyz = self.cls_token_xyz
cls_tokens_xyz = cls_token_xyz.expand(y.shape[0], -1, -1)
y = torch.cat((cls_tokens_xyz, y), dim=1)
# apply Transformer blocks
for blk in self.blocks_xyz:
y = blk(y)
y = self.norm_xyz(y)
##### forward E_RGB #####
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
# combine encodings
x = torch.cat([x, y], dim=2)
return x
def forward_decoder(self, x, unseen_xyz):
# embed tokens
x = self.decoder_embed(x)
x = x + self.decoder_pos_embed
# 3D pos embed
unseen_xyz = self.decoder_xyz_pos_embed(unseen_xyz)
x = torch.cat([x, unseen_xyz], dim=1)
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x, unseen_xyz.shape[1])
x = self.decoder_norm(x)
# predictor projection
pred = self.decoder_pred(x)
# remove cls & seen token
pred = pred[:, -unseen_xyz.shape[1]:, :]
return pred
def forward_loss(self, pred, unseen_occupy, unseen_rgb):
loss = self.loss_occupy(
pred[:, :, :1].reshape((-1, 1)),
unseen_occupy.reshape((-1, 1)).float()
) * self.occupancy_weight
if unseen_occupy.sum() > 0:
if self.args.regress_color:
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()]
gt_rgb = unseen_rgb[unseen_occupy.bool()]
else:
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()].reshape((-1, 256))
gt_rgb = torch.round(unseen_rgb[unseen_occupy.bool()] * 255).long().reshape((-1,))
rgb_loss = self.loss_rgb(pred_rgb, gt_rgb) * self.rgb_weight
loss = loss + rgb_loss
return loss
def clear_cache(self):
self.cached_enc_feat = None
def forward(self, seen_images, seen_xyz, unseen_xyz, unseen_rgb, unseen_occupy, valid_seen_xyz,
cache_enc=False):
unseen_xyz = shrink_points_beyond_threshold(unseen_xyz, self.args.shrink_threshold)
if self.cached_enc_feat is None:
seen_images = preprocess_img(seen_images)
seen_xyz = shrink_points_beyond_threshold(seen_xyz, self.args.shrink_threshold)
latent = self.forward_encoder(seen_images, seen_xyz, valid_seen_xyz)
if cache_enc:
if self.cached_enc_feat is None:
self.cached_enc_feat = latent
else:
latent = self.cached_enc_feat
pred = self.forward_decoder(latent, unseen_xyz)
loss = self.forward_loss(pred, unseen_occupy, unseen_rgb)
return loss, pred
def get_mcc_model(**kwargs):
return MCC(
embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs
)
def shrink_points_beyond_threshold(xyz, threshold):
xyz = xyz.clone().detach()
dist = (xyz ** 2.0).sum(axis=-1) ** 0.5
affected = (dist > threshold) * torch.isfinite(dist)
xyz[affected] = xyz[affected] * (
threshold * (2.0 - threshold / dist[affected]) / dist[affected]
)[..., None]
return xyz
def preprocess_img(x):
if x.shape[2] != 224:
assert x.shape[2] == 800
x = F.interpolate(
x,
scale_factor=224./800.,
mode="bilinear",
)
resnet_mean = torch.tensor([0.485, 0.456, 0.406], device=x.device).reshape((1, 3, 1, 1))
resnet_std = torch.tensor([0.229, 0.224, 0.225], device=x.device).reshape((1, 3, 1, 1))
imgs_normed = (x - resnet_mean) / resnet_std
return imgs_normed
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|