File size: 6,312 Bytes
0e1636e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36edb4
7a714ac
 
 
 
 
 
0e1636e
 
 
 
e05d5a8
 
0e1636e
 
 
 
 
 
 
 
 
 
 
 
 
b166a40
0e1636e
 
 
b166a40
0e1636e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import random

class FetchModel:
    @staticmethod
    def all_models():
        models = [
            {
                "id": "llama-4-maverick-17b",
                "name": "LLaMA 4 Maverick 17B",
                "description": "Meta AI's 17B-parameter general-purpose model from the LLaMA 4 series, designed for high-quality text generation.",
                "type": "text"
            },
            {
                "id": "llama-4-scout-17b",
                "name": "LLaMA 4 Scout 17B",
                "description": "Instruction-tuned version of LLaMA 4 by Meta, tailored for alignment and structured task performance.",
                "type": "text"
            },
            {
                "id": "llama-3.1-8b",
                "name": "LLaMA 3.1 8B",
                "description": "A fast and lightweight 8B parameter model from Meta's LLaMA 3.1 line, optimized for low-latency inference.",
                "type": "text"
            },
            {
                "id": "llama-3.3-70b",
                "name": "LLaMA 3.3 70B",
                "description": "Meta's 70B parameter flagship model from LLaMA 3.3, designed for state-of-the-art language understanding and generation.",
                "type": "text"
            },
            {
                "id": "deepseek-r1",
                "name": "DeepSeek R1",
                "description": "DeepSeek AIs foundational model focused on reasoning, language understanding, and long-context comprehension.",
                "type": "text"
            },
            {
                "id": "deepseek-v3",
                "name": "DeepSeek V3",
                "description": "DeepSeek AIs third-generation model with enhanced reasoning and coding abilities.",
                "type": "text"
            },
            {
                "id": "qwen-2.5-72b",
                "name": "Qwen 2.5 72B",
                "description": "Large instruction-tuned language model from Qwen 2.5 family, optimized for complex NLP tasks.",
                "type": "text"
            },
            {
                "id": "gemma-2-27b",
                "name": "Gemma 2 27B",
                "description": "Googles instruction-tuned model with 27B parameters, capable of high-performance natural language understanding.",
                "type": "text"
            },
            {
                "id": "grok-3",
                "name": "Grok 3",
                "description": "xAI's general-purpose large language model designed for reasoning, conversation, and alignment.",
                "type": "text"
            },
            {
                "id": "grok-3-fast",
                "name": "Grok 3 (Fast)",
                "description": "A low-latency version of Grok 3 optimized for responsiveness and quick task execution.",
                "type": "text"
            },
            {
                "id": "grok-3-mini",
                "name": "Grok 3 Mini",
                "description": "A smaller variant of Grok 3 designed for lighter inference while maintaining core capabilities.",
                "type": "text"
            },
            {
                "id": "grok-3-mini-fast",
                "name": "Grok 3 Mini (Fast)",
                "description": "Fast and lightweight variant of Grok 3 Mini for extremely low-latency use cases.",
                "type": "text"
            },
            {
                "id": "grok-2-1212",
                "name": "Grok 2 1212",
                "description": "An earlier generation Grok model from xAI, optimized for general language tasks with improved efficiency.",
                "type": "text"
            },
            {
                "id": "fal-ai/fast-sdxl",
                "name": "Fast SDXL",
                "description": "A fast and efficient image generation model from the SDXL family, optimized for high-quality outputs.",
                "type": "image"
            }
        ]
        
        return models
    
    @staticmethod
    def select_model(id):
        if id == "llama-4-maverick-17b":
            options = ['meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8']
            model = random.choice(options)
            return model
        elif id == "llama-4-scout-17b":
            options = ['meta-llama/Llama-4-Scout-17B-16E-Instruct', 'meta-llama/llama-4-scout-17b-16e-instruct']
            model = random.choice(options)
            return model
        elif id == "llama-3.1-8b":
            options = ['llama-3.1-8b-instant']
            model = random.choice(options)
            return model
        elif id == "llama-3.3-70b":
            options = ['meta-llama/Llama-3.3-70B-Instruct-Turbo', 'llama-3.3-70b-versatile', 'meta-llama/Llama-3.3-70B-Instruct-Turbo']
            model = random.choice(options)
            return model
        elif id == "deepseek-r1":
            options = ['deepseek-ai/DeepSeek-R1', 'deepseek-r1-distill-llama-70b', 'deepseek-ai/DeepSeek-R1-Turbo', 'deepseek-ai/DeepSeek-R1-Distill-Llama-70B', 'deepseek-ai/DeepSeek-R1-Distill-Qwen-32B']
            model = random.choice(options)
            return model
        elif id == "deepseek-v3":
            options = ['deepseek-ai/DeepSeek-V3']
            model = random.choice(options)
            return model
        elif id == "qwen-2.5-72b":
            options = ['Qwen/Qwen2.5-VL-72B-Instruct', 'Qwen/Qwen2.5-72B-Instruct']
            model = random.choice(options)
            return model
        elif id == "gemma-2-27b":
            options = ['google/gemma-2-27b-it']
            model = random.choice(options)
            return model
        elif id == "grok-3":
            options = ['grok-3']
            model = random.choice(options)
            return model
        elif id == "grok-3-fast":
            options = ['grok-3-fast']
            model = random.choice(options)
            return model
        elif id == "grok-3-mini":
            options = ['grok-3-mini']
            model = random.choice(options)
            return model
        elif id == "grok-3-mini-fast":
            options = ['grok-3-mini-fast']
            model = random.choice(options)
            return model
        elif id == "grok-2-1212":
            options = ['grok-2-1212']
            model = random.choice(options)
            return model