File size: 6,514 Bytes
e700505 af5e18d b166a40 0e1636e e05d5a8 0d14a90 f866f5e e700505 f866f5e e700505 af5e18d e700505 af5e18d e700505 af5e18d e700505 0f00e90 b166a40 0f00e90 e700505 af5e18d 0e1636e e05d5a8 0e1636e e05d5a8 0e1636e e05d5a8 0e1636e b166a40 0e1636e b166a40 0e1636e e700505 0d14a90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from models.text.together.main import TogetherAPI
from models.text.vercel.main import XaiAPI, GroqAPI, DeepinfraAPI
from models.image.vercel.main import FalAPI
from models.image.together.main import TogetherImageAPI
from models.text.deepinfra.main import OFFDeepInfraAPI
from models.fetch import FetchModel
from auth.key import NimbusAuthKey
from tools.googlesearch.main import search
from tools.fetch import Tools
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
@app.get("/")
async def root():
return {"status":"ok", "routes":{"/":"GET", "/api/v1/generate":"POST", "/api/v1/models":"GET", "/api/v1/generate-images":"POST"}, "models": ["text", "image"]}
@app.post("/api/v1/generate")
async def generate(request: Request):
data = await request.json()
messages = data['messages']
model = data['model']
if not messages or not model:
return {"error": "Invalid request. 'messages' and 'model' are required."}
try:
query = {
'model': model,
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': messages,
'stream': True,
}
together_models = TogetherAPI().get_model_list()
xai_models = XaiAPI().get_model_list()
groq_models = GroqAPI().get_model_list()
deepinfra_models = DeepinfraAPI().get_model_list()
if model in together_models:
streamModel = TogetherAPI()
elif model in xai_models:
streamModel = XaiAPI()
elif model in groq_models:
streamModel = GroqAPI()
elif model in deepinfra_models:
streamModel = DeepinfraAPI()
else:
return {"error": f"Model '{model}' is not supported."}
response = streamModel.generate(query)
return StreamingResponse(response, media_type="text/event-stream")
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@app.get("/api/v1/models")
async def get_models():
try:
models = {
'text': {
'together': TogetherAPI().get_model_list(),
'xai': XaiAPI().get_model_list(),
'groq': GroqAPI().get_model_list(),
'deepinfra': DeepinfraAPI().get_model_list(),
"official_deepinfra": OFFDeepInfraAPI().get_model_list()
},
'image': {
'fal': FalAPI().get_model_list(),
'together': TogetherImageAPI().get_model_list()
}
}
return {"models": models}
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@app.post('/api/v1/generate-images')
async def generate_images(request: Request):
data = await request.json()
prompt = data['prompt']
model = data['model']
print(model)
fal_models = FalAPI().get_model_list()
together_models = TogetherImageAPI().get_model_list()
if not prompt or not model:
return {"error": "Invalid request. 'prompt' and 'model' are required."}
if model in fal_models:
streamModel = FalAPI()
elif model in together_models:
streamModel = TogetherImageAPI()
else:
return {"error": f"Model '{model}' is not supported."}
try:
query = {
'prompt': prompt,
'modelId': model,
}
response = await streamModel.generate(query)
return response
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@app.get('/api/v1/fetch-models')
async def fetch_models():
model = FetchModel()
return model.all_models()
@app.post('/api/v1/text/generate')
async def text_generate(request: Request):
data = await request.json()
messages = data['messages']
choice = data['model']
api_key = data.get('api_key')
auth = NimbusAuthKey()
user = auth.get_user(data.get('api_key'))
if not user:
return {"error": "Invalid API key"}
if not api_key:
return {"error": "API key is required"}
if not messages or not choice:
return {"error": "Invalid request. 'messages' and 'model' are required."}
model = FetchModel().select_model(choice)
if not model:
return {"error": f"Model '{choice}' is not supported."}
try:
query = {
'model': model,
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': messages,
'stream': True,
}
together_models = TogetherAPI().get_model_list()
xai_models = XaiAPI().get_model_list()
groq_models = GroqAPI().get_model_list()
deepinfra_models = DeepinfraAPI().get_model_list()
official_deepinfra_models = OFFDeepInfraAPI().get_model_list()
if model in together_models:
streamModel = TogetherAPI()
elif model in xai_models:
streamModel = XaiAPI()
elif model in groq_models:
streamModel = GroqAPI()
elif model in deepinfra_models:
streamModel = DeepinfraAPI()
elif model in official_deepinfra_models:
streamModel = OFFDeepInfraAPI()
else:
return {"error": f"Model '{model}' is not supported."}
response = streamModel.generate(query)
return StreamingResponse(response, media_type="text/event-stream")
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@app.get('/api/v1/tools')
async def tools():
return Tools.fetch_tools()
@app.get('/api/v1/tools/google-search')
async def searchtool(request: Request):
data = await request.json()
query = data['query']
num_results = data.get('num_results', 10)
response = search(term=query, num_results=num_results, advanced=True, unique=False)
return response
|