File size: 2,849 Bytes
8917cb5 faa52ce 8917cb5 275d258 8917cb5 275d258 faa52ce 8917cb5 faa52ce ed044ca 8917cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import io
import gradio as gr
import librosa
import numpy as np
import soundfile
import torch
from inference.infer_tool import Svc
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
model_name = "logs/32k/tiehu.pth"
config_name = "configs/tiehu.json"
svc_model = Svc(model_name, config_name)
sid_map = {
"南云铁虎": "tiehu"
}
def vc_fn(sid, input_audio, vc_transform):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
# print(audio.shape,sampling_rate)
duration = audio.shape[0] / sampling_rate
if duration > 45:
return "请上传小于45s的音频,需要转换长音频请本地进行转换", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
print(audio.shape)
out_wav_path = io.BytesIO()
soundfile.write(out_wav_path, audio, 16000, format="wav")
out_wav_path.seek(0)
sid = sid_map[sid]
out_audio, out_sr = svc_model.infer(sid, vc_transform, out_wav_path)
_audio = out_audio.cpu().numpy()
return "Success", (32000, _audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
gr.Markdown(value="""
南云铁虎Sovits3.0模型
如需本地使用,下载files里configs文件夹中.json格式文件,
logs/32k文件夹中.pth格式文件
3.0.zip文件并解压,查看说明.txt文件
项目改写基于 https://huggingface.co/spaces/innnky/nyaru-svc-3.0
模型使用协议(重要):
1.请勿用于商业目的
2.请勿用于会影响本人的行为(比如冒充本人发表争议言论)
3.请勿用于血腥、暴力、性相关、政治相关内容
4.非个人使用场合请注明模型作者
5.允许用于个人娱乐场景下的游戏语音、直播活动
sid = gr.Dropdown(label="音色", choices=["南云铁虎"], value="tiehu")
vc_input3 = gr.Audio(label="上传音频(长度小于45秒)")
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
vc_submit = gr.Button("转换", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform], [vc_output1, vc_output2])
app.launch()
|