File size: 5,940 Bytes
a43f4d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import time
import os
import random
import numpy as np
import torch
import torch.utils.data
import commons
from mel_processing import spectrogram_torch, spec_to_mel_torch
from utils import load_wav_to_torch, load_filepaths_and_text, transform
# import h5py
"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths, hparams):
self.audiopaths = load_filepaths_and_text(audiopaths)
self.max_wav_value = hparams.data.max_wav_value
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.sampling_rate = hparams.data.sampling_rate
self.use_sr = hparams.train.use_sr
self.spec_len = hparams.train.max_speclen
self.spk_map = hparams.spk
random.seed(1234)
random.shuffle(self.audiopaths)
def get_audio(self, filename):
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
spk = filename.split(os.sep)[-2]
spk = torch.LongTensor([self.spk_map[spk]])
c = torch.load(filename + ".soft.pt").squeeze(0)
c = torch.repeat_interleave(c, repeats=2, dim=1)
f0 = np.load(filename + ".f0.npy")
f0 = torch.FloatTensor(f0)
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename)
assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
audio_norm = audio_norm[:, :lmin * self.hop_length]
_spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0
while spec.size(-1) < self.spec_len:
spec = torch.cat((spec, _spec), -1)
c = torch.cat((c, _c), -1)
f0 = torch.cat((f0, _f0), -1)
audio_norm = torch.cat((audio_norm, _audio_norm), -1)
start = random.randint(0, spec.size(-1) - self.spec_len)
end = start + self.spec_len
spec = spec[:, start:end]
c = c[:, start:end]
f0 = f0[start:end]
audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length]
return c, f0, spec, audio_norm, spk
def __getitem__(self, index):
return self.get_audio(self.audiopaths[index][0])
def __len__(self):
return len(self.audiopaths)
class EvalDataLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths, hparams):
self.audiopaths = load_filepaths_and_text(audiopaths)
self.max_wav_value = hparams.data.max_wav_value
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.sampling_rate = hparams.data.sampling_rate
self.use_sr = hparams.train.use_sr
self.audiopaths = self.audiopaths[:5]
self.spk_map = hparams.spk
def get_audio(self, filename):
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
spk = filename.split(os.sep)[-2]
spk = torch.LongTensor([self.spk_map[spk]])
c = torch.load(filename + ".soft.pt").squeeze(0)
c = torch.repeat_interleave(c, repeats=2, dim=1)
f0 = np.load(filename + ".f0.npy")
f0 = torch.FloatTensor(f0)
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape)
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
audio_norm = audio_norm[:, :lmin * self.hop_length]
return c, f0, spec, audio_norm, spk
def __getitem__(self, index):
return self.get_audio(self.audiopaths[index][0])
def __len__(self):
return len(self.audiopaths)
|