File size: 5,463 Bytes
c3b8e88
 
 
 
 
 
 
 
 
 
 
 
 
5812c3e
c3b8e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# from flask import Flask, request, jsonify
import cv2
import numpy as np
from keras.applications import ResNet152
from keras.optimizers import Adam
from keras.models import Sequential, Model,load_model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Embedding
from keras.layers import Dropout
from keras.layers import add
from keras.utils import to_categorical
import gradio as gr
from keras.preprocessing import image, sequence
from keras_preprocessing.sequence import pad_sequences
from tqdm import tqdm
import pickle
import tensorflow as tf
# from keras.applications.Resnet50 import preprocess_input
from flask_cors import CORS

from keras.applications import ResNet50
# 
# # Transformer 
# from library.prediction import evaluate_single_image
# from  library.transformer import Transformer
# from library.customSchedule import learning_rate

# top_k = 25000
# num_layer = 4
# d_model = 512
# dff = 2048
# num_heads = 8
# row_size = 8
# col_size = 8
# target_vocab_size = top_k + 1
# dropout_rate = 0.1


# loaded_transformer = Transformer(num_layer, d_model, num_heads, dff, row_size, col_size,
#                                  target_vocab_size, max_pos_encoding=target_vocab_size,
#                                  rate=dropout_rate)

# # Load the weights into the model
# loaded_transformer.load_weights('models/Transformer/model')
# # Use the loaded custom objects
# loaded_transformer.compile(optimizer=tf.keras.optimizers.Adam(learning_rate))
# print("Trasformer model loaded successfully")
# # loaded_transformer.compile(optimizer=tf.keras.optimizers.Adam(learning_rate), loss=train_loss.result(), metrics=[train_accuracy])
# global tokenizer
# with open('pickle_files/transformer/tokenizer.pickle', 'rb') as handle:
#     tokenizer = pickle.load(handle)
#     tokenizer.word_index['<pad>'] = 0
#     tokenizer.index_word[0] = '<pad>'


# print("Tokenizer  loaded successfully")

# 


incept_model = ResNet152(weights='imagenet', include_top=False,input_shape=(224, 224, 3))
last = incept_model.layers[-2].output
ResNet152Model= Model(inputs = incept_model.input,outputs = last)

with open("pickle_files/lstm/words_dict.pkl","rb") as f:
    words_dict=pickle.load(f)


vocab_size = len(words_dict)+1
MAX_LEN = 192
inv_dict = {v:k for k, v in words_dict.items()}


model = tf.keras.models.load_model('LSTM/lstm_model.h5')

# inputs1 = Input(shape=(2048,))
# fe1 = Dropout(0.5)(inputs1)
# fe2 = Dense(256, activation='relu')(fe1)

# # language sequence model
# inputs2 = Input(shape=(MAX_LEN,))
# se1 = Embedding(vocab_size, MAX_LEN, mask_zero=True)(inputs2)
# se2 = Dropout(0.4)(se1)
# se3 = LSTM(256)(se2)

# # decoder model
# decoder1 = add([fe2, se3])
# decoder2 = Dense(256, activation='relu')(decoder1)
# outputs = Dense(vocab_size, activation='softmax')(decoder2)

# # tie it together [image, seq] [word]
# model = Model(inputs=[inputs1, inputs2], outputs=outputs)
# # compile model
# model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
# model.load_model("models/LSTM/cultural_nepali_50.h5")
# print("LSTM model  loaded successfully")


# app = Flask(__name__)
# app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 1
# cors = CORS(app, resources={r"/*": {"origins": "*"}})
# @app.route('/')
# def index(): 
#     return render_template('index.html')


# @app.route('/tranformer',methods=['POST'])
# def tranformer():
#     if 'file' not in request.files:
#         return 'No file part'

#     file = request.files['file']

#     if file.filename == '':
#         return 'No selected file'

#     # Save the file
   
#     file.save('static/file.jpg')
#     caption=evaluate_single_image("static/file.jpg",tokenizer,loaded_transformer)
#     print(caption)
#     return jsonify({'caption': caption})


# @app.route('/lstm', methods=['POST'])
def after(image):

    # if 'file' not in request.files:
    #     return 'No file part'

    # file = request.files['file']

    # if file.filename == '':
    #     return 'No selected file'

    # # Save the file
   
    # file.save('static/file.jpg')

    # Read the saved file
    img = cv2.imread(image)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img, (224,224))
    img = img.reshape(1,224,224,3)
    test_img_resized=ResNet152Model.predict(img).reshape(2048,) 


    text_inp = ['startofseq']
    count = 0
    caption = ''
    while count < MAX_LEN:
        count += 1
        encoded = []
        encoded = [words_dict.get(word, len(words_dict) - 1) for word in text_inp]  # Convert words to indices, using index for '<end>' for unknown words
        encoded = pad_sequences([encoded], padding='post', truncating='post', maxlen=MAX_LEN)[0]  # Pad sequences

        data_list = [test_img_resized.reshape(1, -1), encoded.reshape(1, -1)]  # Reshape encoded
        prediction = np.argmax(model.predict(data_list))
        prediction = np.argmax(model.predict(data_list))
        sampled_word = inv_dict[prediction]
        caption = caption + ' ' + sampled_word

        if sampled_word == 'endofseq':
            break
        text_inp.append(sampled_word)

    caption= caption.replace('endofseq','')
    print(caption.replace(' .','.'))

    # return jsonify({'caption': caption.replace(' .','.')})
    return caption.replace(' .','.')



iface = gr.Interface(fn=after, inputs="image", outputs="text")
iface.launch()
# if __name__ == "__main__":
#     app.run(debug=True)