Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,508 Bytes
4c954ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import argparse
import os
from os.path import join
import sys
import numpy as np
import cv2
import torch
from matplotlib import pyplot as plt
from tqdm import tqdm
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches
from line_matching.two_view_pipeline import TwoViewPipeline
from scalelsd.base import show, WireframeGraph
from scalelsd.ssl.datasets.transforms.homographic_transforms import sample_homography
from kornia.geometry import warp_perspective,transform_points
class HADConfig:
num_iter = 1
valid_border_margin = 3
translation = True
rotation = True
scale = True
perspective = True
scaling_amplitude = 0.2
perspective_amplitude_x = 0.2
perspective_amplitude_y = 0.2
allow_artifacts = False
patch_ratio = 0.85
had_cfg = HADConfig()
def sample_homographics(height, width):
def scale_homography(H, stride):
H_scaled = H.clone()
H_scaled[:, :, 2, :2] *= stride
H_scaled[:, :, :2, 2] /= stride
return H_scaled
homographic = sample_homography(
shape = (height, width),
perspective = had_cfg.perspective,
scaling = had_cfg.scale,
rotation = had_cfg.rotation,
translation = had_cfg.translation,
scaling_amplitude = had_cfg.scaling_amplitude,
perspective_amplitude_x = had_cfg.perspective_amplitude_x,
perspective_amplitude_y = had_cfg.perspective_amplitude_y,
patch_ratio = had_cfg.patch_ratio,
allow_artifacts = False
)[0]
homographic = torch.from_numpy(homographic[None]).float().cuda()
homographic_inv = torch.inverse(homographic)
H = {
'h.1': homographic,
'ih.1': homographic_inv,
}
return H
def trans_image_with_homograpy(image):
h, w = image.shape[:2]
H = sample_homographics(height=h, width=w)
image_warped = warp_perspective(torch.Tensor(image).permute(2,0,1)[None].cuda(), H['h.1'], (h,w))
image_warped_ = image_warped[0].permute(1,2,0).cpu().numpy().astype(np.uint8)
plt.imshow(image_warped_)
plt.show()
return image_warped_
def main():
# Parse input parameters
parser = argparse.ArgumentParser(
prog='GlueStick Demo',
description='Demo app to show the point and line matches obtained by GlueStick')
parser.add_argument('-img1', default='assets/figs/sa_1119229.jpg')
parser.add_argument('-img2', default=None)
parser.add_argument('--max_pts', type=int, default=1000)
parser.add_argument('--max_lines', type=int, default=300)
parser.add_argument('--model', type=str, default='models/paper-sa1b-997pkgs-model.pt')
args = parser.parse_args()
# important
if args.img1 is None and args.img2 is None:
raise ValueError("Input at least one path of image1 or image2")
# Evaluation config
conf = {
'name': 'two_view_pipeline',
'use_lines': True,
'extractor': {
'name': 'wireframe',
'sp_params': {
'force_num_keypoints': False,
'max_num_keypoints': args.max_pts,
},
'wireframe_params': {
'merge_points': True,
'merge_line_endpoints': True,
# 'merge_line_endpoints': False,
},
'max_n_lines': args.max_lines,
},
'matcher': {
'name': 'gluestick',
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'),
'trainable': False,
},
'ground_truth': {
'from_pose_depth': False,
}
}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pipeline_model = TwoViewPipeline(conf).to(device).eval()
pipeline_model.extractor.update_conf(None)
saveto = f'temp_output/matching_results'
os.makedirs(saveto, exist_ok=True)
image1 = cv2.cvtColor(cv2.imread(args.img1), cv2.COLOR_BGR2RGB)
if args.img2 is None:
image2 = trans_image_with_homograpy(image1)
cv2.imwrite(f'{saveto}/warped_image.png', image2)
args.img2 = f'{saveto}/warped_image.png'
gray0 = cv2.imread(args.img1, 0)
gray1 = cv2.imread(args.img2, 0)
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None]
x = {'image0': torch_gray0, 'image1': torch_gray1}
pred = pipeline_model(x)
pred = batch_to_np(pred)
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0 = pred["matches0"]
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
line_matches = pred["line_matches0"]
valid_matches = m0 != -1
match_indices = m0[valid_matches]
matched_kps0 = kp0[valid_matches]
matched_kps1 = kp1[match_indices]
valid_matches = line_matches != -1
match_indices = line_matches[valid_matches]
matched_lines0 = line_seg0[valid_matches]
matched_lines1 = line_seg1[match_indices]
# Plot the matches
gray0 = cv2.imread(args.img1, 0)
gray1 = cv2.imread(args.img2, 0)
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR)
plot_images([img0, img1], dpi=200, pad=2.0)
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
plt.gcf().canvas.manager.set_window_title('Detected Lines')
# plt.tight_layout()
plt.savefig(f'{saveto}/det.png')
plot_images([img0, img1], dpi=200, pad=2.0)
plot_color_line_matches([matched_lines0, matched_lines1], lw=3)
plt.gcf().canvas.manager.set_window_title('Line Matches')
# plt.tight_layout()
plt.savefig(f'{saveto}/mat.png')
whitebg = 1
show.Canvas.white_overlay = whitebg
painter = show.painters.HAWPainter()
fig_file = f'{saveto}/det1.png'
outputs = {'lines_pred': line_seg0.reshape(-1,4)}
with show.image_canvas(args.img1, fig_file=fig_file) as ax:
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan')
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
fig_file = f'{saveto}/det2.png'
outputs = {'lines_pred': line_seg1.reshape(-1,4)}
with show.image_canvas(args.img2, fig_file=fig_file) as ax:
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
if __name__ == '__main__':
main()
|