File size: 16,412 Bytes
3060b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590b13e
3060b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os,copy
import inspect
from typing import Optional, List, Dict, Union
import PIL
import click
from omegaconf import OmegaConf

import torch
import torch.utils.data
import torch.nn.functional as F
import torch.utils.checkpoint

from accelerate import Accelerator
from accelerate.utils import set_seed
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DDIMScheduler,
    UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils.import_utils import is_xformers_available
from diffusers.pipeline_utils import DiffusionPipeline

from tqdm.auto import tqdm
from transformers import AutoTokenizer, CLIPTextModel
from einops import rearrange

from video_diffusion.models.unet_3d_condition import UNetPseudo3DConditionModel
from video_diffusion.data.dataset import ImageSequenceDataset
from video_diffusion.common.util import get_time_string, get_function_args
from video_diffusion.common.logger import get_logger_config_path
from video_diffusion.common.image_util import log_train_samples, log_train_reg_samples
from video_diffusion.common.instantiate_from_config import instantiate_from_config, get_obj_from_str
from video_diffusion.pipelines.validation_loop import SampleLogger


def collate_fn(examples):
    batch = {
        "prompt_ids": torch.cat([example["prompt_ids"] for example in examples], dim=0),
        "images": torch.stack([example["images"] for example in examples]),
        
    }
    if "class_images" in examples[0]:
        batch["class_prompt_ids"] = torch.cat([example["class_prompt_ids"] for example in examples], dim=0)
        batch["class_images"] =  torch.stack([example["class_images"] for example in examples])
    return batch



def train(
    config: str,
    pretrained_model_path: str,
    train_dataset: Dict,
    logdir: str = None,
    train_steps: int = 300,
    validation_steps: int = 1000,
    validation_sample_logger_config: Optional[Dict] = None,
    test_pipeline_config: Optional[Dict] = dict(),
    trainer_pipeline_config: Optional[Dict] = dict(),
    gradient_accumulation_steps: int = 1,
    seed: Optional[int] = None,
    mixed_precision: Optional[str] = "fp16",
    enable_xformers: bool = True,
    train_batch_size: int = 1,
    learning_rate: float = 3e-5,
    scale_lr: bool = False,
    lr_scheduler: str = "constant",  # ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
    lr_warmup_steps: int = 0,
    use_8bit_adam: bool = True,
    adam_beta1: float = 0.9,
    adam_beta2: float = 0.999,
    adam_weight_decay: float = 1e-2,
    adam_epsilon: float = 1e-08,
    max_grad_norm: float = 1.0,
    gradient_checkpointing: bool = False,
    train_temporal_conv: bool = False,
    checkpointing_steps: int = 1000,
    model_config: dict={},
    # use_train_latents: bool=False,
    # kwr
    # **kwargs
):
    args = get_function_args()
    # args.update(kwargs)
    train_dataset_config = copy.deepcopy(train_dataset)
    time_string = get_time_string()
    if logdir is None:
        logdir = config.replace('config', 'result').replace('.yml', '').replace('.yaml', '')
    logdir += f"_{time_string}"
    
    accelerator = Accelerator(
        gradient_accumulation_steps=gradient_accumulation_steps,
        mixed_precision=mixed_precision,
    )
    if accelerator.is_main_process:
        os.makedirs(logdir, exist_ok=True)
        OmegaConf.save(args, os.path.join(logdir, "config.yml"))
    logger = get_logger_config_path(logdir)
    if seed is not None:
        set_seed(seed)

    # Load the tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        pretrained_model_path,
        subfolder="tokenizer",
        use_fast=False,
    )

    # Load models and create wrapper for stable diffusion
    text_encoder = CLIPTextModel.from_pretrained(
        pretrained_model_path,
        subfolder="text_encoder",
    )

    vae = AutoencoderKL.from_pretrained(
        pretrained_model_path,
        subfolder="vae",
    )

    unet = UNetPseudo3DConditionModel.from_2d_model(
        os.path.join(pretrained_model_path, "unet"), model_config=model_config
    )

    
    if 'target' not in test_pipeline_config:
        test_pipeline_config['target'] = 'video_diffusion.pipelines.stable_diffusion.SpatioTemporalStableDiffusionPipeline'
    
    pipeline = instantiate_from_config(
        test_pipeline_config,
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=DDIMScheduler.from_pretrained(
            pretrained_model_path,
            subfolder="scheduler",
        ),
    )
    pipeline.scheduler.set_timesteps(validation_sample_logger_config['num_inference_steps'])
    pipeline.set_progress_bar_config(disable=True)


    if is_xformers_available() and enable_xformers:
    # if False:  # Disable xformers for null inversion
        try:
            pipeline.enable_xformers_memory_efficient_attention()
            print('enable xformers in the training and testing')
        except Exception as e:
            logger.warning(
                "Could not enable memory efficient attention. Make sure xformers is installed"
                f" correctly and a GPU is available: {e}"
            )

    vae.requires_grad_(False)
    unet.requires_grad_(False)
    text_encoder.requires_grad_(False)

    # Start of config trainable parameters in Unet and optimizer
    trainable_modules = ("attn_temporal", ".to_q")
    if train_temporal_conv:
        trainable_modules += ("conv_temporal",)
    for name, module in unet.named_modules():
        if name.endswith(trainable_modules):
            for params in module.parameters():
                params.requires_grad = True
                

    if gradient_checkpointing:
        print('enable gradient checkpointing in the training and testing')    
        unet.enable_gradient_checkpointing()

    if scale_lr:
        learning_rate = (
            learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    params_to_optimize = unet.parameters()
    num_trainable_modules = 0
    num_trainable_params = 0 
    num_unet_params = 0
    for params in params_to_optimize:
        num_unet_params += params.numel()
        if params.requires_grad == True:
            num_trainable_modules +=1
            num_trainable_params += params.numel()
    
    logger.info(f"Num of trainable modules: {num_trainable_modules}")        
    logger.info(f"Num of trainable params: {num_trainable_params/(1024*1024):.2f} M")
    logger.info(f"Num of unet params: {num_unet_params/(1024*1024):.2f} M ")
    
    
    params_to_optimize = unet.parameters()
    optimizer = optimizer_class(
        params_to_optimize,
        lr=learning_rate,
        betas=(adam_beta1, adam_beta2),
        weight_decay=adam_weight_decay,
        eps=adam_epsilon,
    )
    # End of config trainable parameters in Unet and optimizer


    prompt_ids = tokenizer(
        train_dataset["prompt"],
        truncation=True,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        return_tensors="pt",
    ).input_ids
    
    if 'class_data_root' in train_dataset_config:
        if 'class_data_prompt' not in train_dataset_config:
            train_dataset_config['class_data_prompt'] = train_dataset_config['prompt']
        class_prompt_ids = tokenizer(
            train_dataset_config["class_data_prompt"],
            truncation=True,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids
    else:
        class_prompt_ids = None
    train_dataset = ImageSequenceDataset(**train_dataset, prompt_ids=prompt_ids, class_prompt_ids=class_prompt_ids)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=train_batch_size,
        shuffle=True,
        num_workers=0,
        collate_fn=collate_fn,
    )

    train_sample_save_path = os.path.join(logdir, "train_samples.gif")
    log_train_samples(save_path=train_sample_save_path, train_dataloader=train_dataloader)
    if 'class_data_root' in train_dataset_config:
        log_train_reg_samples(save_path=train_sample_save_path.replace('train_samples', 'class_data_samples'), train_dataloader=train_dataloader)

    # Prepare learning rate scheduler in accelerate config
    lr_scheduler = get_scheduler(
        lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
        num_training_steps=train_steps * gradient_accumulation_steps,
    )

    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )
    accelerator.register_for_checkpointing(lr_scheduler)

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        print('enable float16 in the training and testing')
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move text_encode and vae to gpu.
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    vae.to(accelerator.device, dtype=weight_dtype)
    text_encoder.to(accelerator.device, dtype=weight_dtype)


    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("video")  # , config=vars(args))
    
    # Start of config trainer
    trainer = instantiate_from_config(
        trainer_pipeline_config,
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler= DDPMScheduler.from_pretrained(
            pretrained_model_path,
            subfolder="scheduler",
            ),
        # training hyperparams
        weight_dtype=weight_dtype,
        accelerator=accelerator,
        optimizer=optimizer,
        max_grad_norm=max_grad_norm,
        lr_scheduler=lr_scheduler,
        prior_preservation=None
    )
    trainer.print_pipeline(logger)
    # Train!
    total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Instantaneous batch size per device = {train_batch_size}")
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(f"  Gradient Accumulation steps = {gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {train_steps}")
    step = 0
    # End of config trainer
    
    if validation_sample_logger_config is not None and accelerator.is_main_process:
        validation_sample_logger = SampleLogger(**validation_sample_logger_config, logdir=logdir)


    # Only show the progress bar once on each machine.
    progress_bar = tqdm(
        range(step, train_steps),
        disable=not accelerator.is_local_main_process,
    )
    progress_bar.set_description("Steps")

    def make_data_yielder(dataloader):
        while True:
            for batch in dataloader:
                yield batch
            accelerator.wait_for_everyone()

    train_data_yielder = make_data_yielder(train_dataloader)

    
    assert(train_dataset.overfit_length == 1), "Only support overfiting on a single video"
    # batch = next(train_data_yielder)

        
    while step < train_steps:
        batch = next(train_data_yielder)
        """************************* start of an iteration*******************************"""
        loss = trainer.step(batch)
        # torch.cuda.empty_cache()
        
        """************************* end of an iteration*******************************"""
        # Checks if the accelerator has performed an optimization step behind the scenes
        if accelerator.sync_gradients:
            progress_bar.update(1)
            step += 1

            if accelerator.is_main_process:

                if validation_sample_logger is not None and (step % validation_steps == 0):
                    unet.eval()

                    val_image = rearrange(batch["images"].to(dtype=weight_dtype), "b c f h w -> (b f) c h w")
                    
                    # Unet is changing in different iteration; we should invert online
                    if validation_sample_logger_config.get('use_train_latents', False):
                        # Precompute the latents for this video to align the initial latents in training and test
                        assert batch["images"].shape[0] == 1, "Only support, overfiting on a single video"
                        # we only inference for latents, no training
                        vae.eval()
                        text_encoder.eval()
                        unet.eval()
                        
                        text_embeddings = pipeline._encode_prompt(
                                train_dataset.prompt, 
                                device = accelerator.device, 
                                num_images_per_prompt = 1, 
                                do_classifier_free_guidance = True, 
                                negative_prompt=None
                        )
                        batch['latents_all_step'] = pipeline.prepare_latents_ddim_inverted(
                            rearrange(batch["images"].to(dtype=weight_dtype), "b c f h w -> (b f) c h w"), 
                            batch_size = 1 , 
                            num_images_per_prompt = 1,  # not sure how to use it
                            text_embeddings = text_embeddings
                            )
                        batch['ddim_init_latents'] = batch['latents_all_step'][-1]
                    else:
                        batch['ddim_init_latents'] = None                    
                    
                    
                    
                    validation_sample_logger.log_sample_images(
                        # image=rearrange(train_dataset.get_all()["images"].to(accelerator.device, dtype=weight_dtype), "c f h w -> f c h w"), # torch.Size([8, 3, 512, 512])
                        image= val_image, # torch.Size([8, 3, 512, 512])
                        pipeline=pipeline,
                        device=accelerator.device,
                        step=step,
                        latents = batch['ddim_init_latents'],
                    )
                    torch.cuda.empty_cache()
                    unet.train()

                if step % checkpointing_steps == 0:
                    accepts_keep_fp32_wrapper = "keep_fp32_wrapper" in set(
                        inspect.signature(accelerator.unwrap_model).parameters.keys()
                    )
                    extra_args = {"keep_fp32_wrapper": True} if accepts_keep_fp32_wrapper else {}
                    pipeline_save = get_obj_from_str(test_pipeline_config["target"]).from_pretrained(
                        pretrained_model_path,
                        unet=accelerator.unwrap_model(unet, **extra_args),
                    )
                    checkpoint_save_path = os.path.join(logdir, f"checkpoint_{step}")
                    pipeline_save.save_pretrained(checkpoint_save_path)

        logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
        progress_bar.set_postfix(**logs)
        accelerator.log(logs, step=step)

    accelerator.end_training()


@click.command()
@click.option("--config", type=str, default="config/sample.yml")
def run(config):
    train(config=config, **OmegaConf.load(config))


if __name__ == "__main__":
    run()