File size: 28,495 Bytes
3a1da90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""
trainer.py - wrapper and utility functions for network training
Compute loss, back-prop, update parameters, logging, etc.
"""
import os
from pathlib import Path
from typing import Optional, Union

import torch
import torch.distributed
import torch.optim as optim
from av_bench.evaluate import evaluate
from av_bench.extract import extract
from nitrous_ema import PostHocEMA
from omegaconf import DictConfig
from torch.nn.parallel import DistributedDataParallel as DDP

from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.networks import get_mean_audio
from meanaudio.model.sequence_config import CONFIG_16K, CONFIG_44K
from meanaudio.model.utils.features_utils import FeaturesUtils
from meanaudio.model.utils.parameter_groups import get_parameter_groups
from meanaudio.model.utils.sample_utils import log_normal_sample
from meanaudio.utils.dist_utils import (info_if_rank_zero, local_rank, string_if_rank_zero)
from meanaudio.utils.log_integrator import Integrator
from meanaudio.utils.logger import TensorboardLogger
from meanaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator
import wandb


class RunnerFlowMatching:

    def __init__(self,
                 cfg: DictConfig,
                 log: TensorboardLogger,
                 run_path: Union[str, Path],
                 for_training: bool = True,
                 latent_mean: Optional[torch.Tensor] = None,
                 latent_std: Optional[torch.Tensor] = None):
        self.exp_id = cfg.exp_id
        self.use_amp = cfg.amp
        self.enable_grad_scaler = cfg.enable_grad_scaler
        self.for_training = for_training
        self.cfg = cfg
        self.use_wandb = cfg.get("use_wandb", False)

        if self.use_wandb and local_rank == 0: 
            wandb.init(
                project = "MeanAudio", 
                name = cfg.exp_id, 
                # config = cfg
            )

        # sequence config
        self.seq_cfg = CONFIG_16K  # for 10s audio 
        mode = '16k'

        self.sample_rate = self.seq_cfg.sampling_rate
        self.duration_sec = self.seq_cfg.duration

        # model: TODO - move these into networks.py
        if cfg['text_encoder_name'] == 'clip': 
            empty_string_feat = torch.load('./weights/empty_string.pth', weights_only=True)[0] 
            log.info('Loading empty string feature from ./weights/empty_string.pth for CLIP ...')
        elif cfg['text_encoder_name'] == 't5': 
            empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0] 
            empty_string_feat_c = torch.load('./weights/empty_string_t5_c.pth',  weights_only=True)[0]
            log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_t5_c.pth for T5')
        elif cfg['text_encoder_name'] == 't5_clap': 
            empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0]  # abandon the first (btz) dim. 
            empty_string_feat_c = torch.load('./weights/empty_string_clap_c.pth',  weights_only=True)[0]
            log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_clap_c.pth for T5 and CLAP')
        elif cfg['text_encoder_name'] == 't5_clap_cat':
            empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0]  # abandon the first (btz) dim. 
            empty_string_feat_c = torch.load('./weights/empty_string_clap_c.pth',  weights_only=True)[0]
            empty_string_feat_c = torch.cat([empty_string_feat.mean(dim=-2), empty_string_feat_c], dim=-1)
            log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_clap_c.pth for T5 and CLAP, concating condition features ... ')
        else: 
            raise NotImplementedError(f'Encoder {cfg["text_encoder_name"]} not implemented')
        
        self.network = DDP(get_mean_audio(cfg.model,  # get the model based on base_config.yaml
                                          latent_mean=latent_mean,  # mean and std calculated from the dataset 
                                          latent_std=latent_std,
                                          empty_string_feat=empty_string_feat,
                                          empty_string_feat_c=empty_string_feat_c,  
                                          use_rope=cfg.use_rope,
                                          text_c_dim=cfg.data_dim.text_c_dim).cuda(),
                           device_ids=[local_rank],
                           broadcast_buffers=False)

        self.fm = FlowMatching(cfg.sampling.min_sigma,
                               inference_mode=cfg.sampling.method,
                               num_steps=cfg.sampling.num_steps)

        # ema profile
        if for_training and cfg.ema.enable and local_rank == 0:
            self.ema = PostHocEMA(self.network.module,
                                  sigma_rels=cfg.ema.sigma_rels,
                                  update_every=cfg.ema.update_every,
                                  checkpoint_every_num_steps=cfg.ema.checkpoint_every,
                                  checkpoint_folder=cfg.ema.checkpoint_folder,
                                  step_size_correction=True).cuda()
            self.ema_start = cfg.ema.start
        else:
            self.ema = None

        self.rng = torch.Generator(device='cuda')
        self.rng.manual_seed(cfg['seed'] + local_rank)

        # setting up feature extractors and VAEs
        text_encoder_name = cfg['text_encoder_name']
        
        if mode == '16k':  
            self.features = FeaturesUtils(
                tod_vae_ckpt=cfg['vae_16k_ckpt'],
                bigvgan_vocoder_ckpt=cfg['bigvgan_vocoder_ckpt'],
                encoder_name=text_encoder_name,
                enable_conditions=True,
                mode=mode,
                need_vae_encoder=False,
            )
        elif mode == '44k':
            self.features = FeaturesUtils(
                tod_vae_ckpt=cfg['vae_44k_ckpt'],
                encoder_name=text_encoder_name, 
                enable_conditions=True,
                mode=mode,
                need_vae_encoder=False,
            )
        self.features = self.features.cuda().eval()

        if cfg.compile:
            self.features.compile()

        # hyperparameters
        self.log_normal_sampling_mean = cfg.sampling.mean
        self.log_normal_sampling_scale = cfg.sampling.scale
        self.null_condition_probability = cfg.null_condition_probability
        self.cfg_strength = cfg.cfg_strength
        log.info(f'Initializing flow matching with cfg_strength: {cfg.cfg_strength}')

        # setting up logging
        self.log = log
        self.run_path = Path(run_path)

        string_if_rank_zero(self.log, 'model_size',
                            f'{sum([param.nelement() for param in self.network.parameters()])}')
        string_if_rank_zero(
            self.log, 'number_of_parameters_that_require_gradient: ',
            str(
                sum([
                    param.nelement()
                    for param in filter(lambda p: p.requires_grad, self.network.parameters())
                ])))
        info_if_rank_zero(self.log, 'torch version: ' + torch.__version__)
        self.train_integrator = Integrator(self.log, distributed=True)
        self.val_integrator = Integrator(self.log, distributed=True)

        # setting up optimizer and loss
        if for_training:
            self.enter_train()
            parameter_groups = get_parameter_groups(self.network, cfg, print_log=(local_rank == 0))
            self.optimizer = optim.AdamW(parameter_groups,
                                         lr=cfg['learning_rate'],
                                         weight_decay=cfg['weight_decay'],
                                         betas=[0.9, 0.95],
                                         eps=1e-6 if self.use_amp else 1e-8,
                                         fused=True)
            if self.enable_grad_scaler:
                self.scaler = torch.amp.GradScaler(init_scale=2048)
            self.clip_grad_norm = cfg['clip_grad_norm']

            # linearly warmup learning rate
            linear_warmup_steps = cfg['linear_warmup_steps']

            def warmup(currrent_step: int):
                return (currrent_step + 1) / (linear_warmup_steps + 1)

            warmup_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)

            # setting up learning rate scheduler
            if cfg['lr_schedule'] == 'constant':
                next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda _: 1)
            elif cfg['lr_schedule'] == 'poly':
                total_num_iter = cfg['iterations']
                next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer,
                                                             lr_lambda=lambda x:
                                                             (1 - (x / total_num_iter))**0.9)
            elif cfg['lr_schedule'] == 'step':
                total_num_iter = cfg['num_iterations']
                lr_schedule_steps = [int(0.8 * total_num_iter), int(0.9 * total_num_iter)]
                self.log.info(f'Assigning lr steps: {lr_schedule_steps}')
                next_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
                                                                lr_schedule_steps,
                                                                cfg['lr_schedule_gamma'])
            else:
                raise NotImplementedError

            self.scheduler = optim.lr_scheduler.SequentialLR(self.optimizer,
                                                             [warmup_scheduler, next_scheduler],
                                                             [linear_warmup_steps])

            # Logging info
            self.log_text_interval = cfg['log_text_interval']
            self.log_extra_interval = cfg['log_extra_interval']
            self.save_weights_interval = cfg['save_weights_interval']
            self.save_checkpoint_interval = cfg['save_checkpoint_interval']
            self.save_copy_iterations = cfg['save_copy_iterations']
            self.num_iterations = cfg['num_iterations']

            # update() is called when we log metrics, within the logger
            self.log.batch_timer = TimeEstimator(self.num_iterations, self.log_text_interval)
            # update() is called every iteration, in this script
            self.log.data_timer = PartialTimeEstimator(self.num_iterations, 1, ema_alpha=0.9)
        else:
            self.enter_val()

    def train_fn( 
        self,
        text_f: torch.Tensor,
        text_f_c: torch.Tensor, 
        a_mean: torch.Tensor,
        a_std: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        # sample
        a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
        x1 = a_mean + a_std * a_randn
        bs = x1.shape[0]  # batch_size * seq_len * num_channels

        # normalize the latents
        x1 = self.network.module.normalize(x1)

        t = log_normal_sample(x1,
                              generator=self.rng,
                              m=self.log_normal_sampling_mean,
                              s=self.log_normal_sampling_scale)  # t: (btz)
        x0, x1, xt, [text_f, text_f_c] = self.fm.get_x0_xt_c(x1,
                                                 t,
                                                 Cs=[text_f, text_f_c],
                                                 generator=self.rng)  # do nothing to conditions

        # classifier-free training, seperate guidance for features
        samples = torch.rand(bs, device=x1.device, generator=self.rng)
        null_text = (samples < self.null_condition_probability)
        text_f[null_text] = self.network.module.empty_string_feat

        # samples = torch.rand(bs, device=x1.device, generator=self.rng) 
        null_text_c = (samples < self.null_condition_probability)  # here we do null condition together
        text_f_c[null_text_c] = self.network.module.empty_string_feat_c  

        pred_v = self.network(xt, text_f, text_f_c, t)
        loss = self.fm.loss(pred_v, x0, x1)
        mean_loss = loss.mean()
        return x1, loss, mean_loss, t

    def val_fn(
        self,
        text_f: torch.Tensor,
        text_f_c: torch.Tensor, 
        x1: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        bs = x1.shape[0]  # batch_size * seq_len * num_channels
        # normalize the latents
        x1 = self.network.module.normalize(x1)
        t = log_normal_sample(x1,
                              generator=self.rng,
                              m=self.log_normal_sampling_mean,
                              s=self.log_normal_sampling_scale)
        x0, x1, xt, [text_f, text_f_c] = self.fm.get_x0_xt_c(x1,
                                                 t,
                                                 Cs=[text_f, text_f_c],
                                                 generator=self.rng)

        # classifier-free training
        samples = torch.rand(bs, device=x1.device, generator=self.rng)
        null_text = (samples < self.null_condition_probability)
        text_f[null_text] = self.network.module.empty_string_feat

        # samples = torch.rand(bs, device=x1.device, generator=self.rng)
        null_text_c = (samples < self.null_condition_probability)
        text_f_c[null_text_c] = self.network.module.empty_string_feat_c

        pred_v = self.network(xt, text_f, text_f_c, t)

        loss = self.fm.loss(pred_v, x0, x1)
        mean_loss = loss.mean()
        return loss, mean_loss, t

    def train_pass(self, data, it: int = 0):

        if not self.for_training:
            raise ValueError('train_pass() should not be called when not training.')

        self.enter_train()
        with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
            text_f = data['text_features'].cuda(non_blocking=True)
            text_f_c = data['text_features_c'].cuda(non_blocking=True)
            a_mean = data['a_mean'].cuda(non_blocking=True)
            a_std = data['a_std'].cuda(non_blocking=True)

            self.log.data_timer.end()
            if it % self.log_extra_interval == 0:
                unmasked_text_f = text_f.clone()
                unmasked_text_f_c = text_f_c.clone()
            x1, loss, mean_loss, t = self.train_fn(text_f, text_f_c, a_mean, a_std)

            self.train_integrator.add_dict({'loss': mean_loss})

        if it % self.log_text_interval == 0 and it != 0:
            lr = self.scheduler.get_last_lr()[0]
            self.train_integrator.add_scalar('lr', lr)
            self.train_integrator.add_binned_tensor('binned_loss', loss, t)
            self.train_integrator.finalize('train', it)
            self.train_integrator.reset_except_hooks()

            if self.use_wandb and local_rank == 0: 
                wandb.log(
                    {
                        "lr": lr,
                        "train/loss": mean_loss.detach().float()
                    },
                    step=it  # explicitly x-axis it
                )

        # Backward pass
        self.optimizer.zero_grad(set_to_none=True)
        if self.enable_grad_scaler:
            self.scaler.scale(mean_loss).backward()
            self.scaler.unscale_(self.optimizer)
            grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
                                                       self.clip_grad_norm)
            self.scaler.step(self.optimizer)
            self.scaler.update()
        else:
            mean_loss.backward()
            grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
                                                       self.clip_grad_norm)
            self.optimizer.step()

        if self.ema is not None and it >= self.ema_start:
            self.ema.update()
        self.scheduler.step()
        self.integrator.add_scalar('grad_norm', grad_norm)

        self.enter_val()
        with torch.amp.autocast('cuda', enabled=self.use_amp,
                                dtype=torch.bfloat16), torch.inference_mode():
            try:
                if it % self.log_extra_interval == 0:
                    # save GT audio
                    # unnormalize the latents
                    x1 = self.network.module.unnormalize(x1[0:1])
                    mel = self.features.decode(x1)
                    audio = self.features.vocode(mel).cpu()[0]  # 1 * num_samples
                    self.log.log_spectrogram('train', f'spec-gt-r{local_rank}', mel.cpu()[0], it)
                    self.log.log_audio('train',
                                       f'audio-gt-r{local_rank}',
                                       audio,
                                       it,
                                       sample_rate=self.sample_rate)

                    # save audio from sampling
                    x0 = torch.empty_like(x1[0:1]).normal_(generator=self.rng)
                    text_f = unmasked_text_f[0:1]
                    text_f_c = unmasked_text_f_c[0:1]  # the first element with same sequence
                    conditions = self.network.module.preprocess_conditions(text_f, text_f_c)
                    empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
                    cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
                        t, x, conditions, empty_conditions, self.cfg_strength)
                    x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
                    x1_hat = self.network.module.unnormalize(x1_hat)
                    mel = self.features.decode(x1_hat)
                    audio = self.features.vocode(mel).cpu()[0]
                    self.log.log_spectrogram('train', f'spec-r{local_rank}', mel.cpu()[0], it)
                    self.log.log_audio('train',
                                       f'audio-r{local_rank}',
                                       audio,
                                       it,
                                       sample_rate=self.sample_rate)
            except Exception as e:
                self.log.warning(f'Error in extra logging: {e}')
                if self.cfg.debug:
                    raise

        # Save network weights and checkpoint if needed
        save_copy = it in self.save_copy_iterations

        if (it % self.save_weights_interval == 0 and it != 0) or save_copy:
            self.save_weights(it)

        if it % self.save_checkpoint_interval == 0 and it != 0:
            self.save_checkpoint(it, save_copy=save_copy)

        self.log.data_timer.start()

    @torch.inference_mode()
    def validation_pass(self, data, it: int = 0):
        self.enter_val()
        with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
            text_f = data['text_features'].cuda(non_blocking=True)
            text_f_c = data['text_features_c'].cuda(non_blocking=True)
            a_mean = data['a_mean'].cuda(non_blocking=True)
            a_std = data['a_std'].cuda(non_blocking=True)

            a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
            x1 = a_mean + a_std * a_randn  # differs from train_pass is that validation_pass pass x1 into val_fn

            self.log.data_timer.end()
            loss, mean_loss, t = self.val_fn(text_f.clone(), text_f_c.clone(), x1)

            self.val_integrator.add_binned_tensor('binned_loss', loss, t)
            self.val_integrator.add_dict({'loss': mean_loss})

        self.log.data_timer.start()
        return mean_loss.detach().float()

    @torch.inference_mode()
    def inference_pass(self,
                       data,   # batch data
                       it: int,
                       data_cfg: DictConfig,
                       *,
                       save_eval: bool = True) -> Path:
        self.enter_val()
        with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
            text_f = data['text_features'].cuda(non_blocking=True)
            text_f_c = data['text_features_c'].cuda(non_blocking=True)
            a_mean = data['a_mean'].cuda(non_blocking=True)  # for the shape only

            # sample
            x0 = torch.empty_like(a_mean).normal_(generator=self.rng)
            conditions = self.network.module.preprocess_conditions(text_f, text_f_c)
            empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
            cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
                t, x, conditions, empty_conditions, self.cfg_strength)
            x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
            x1_hat = self.network.module.unnormalize(x1_hat)
            mel = self.features.decode(x1_hat)
            audio = self.features.vocode(mel).cpu()  # (btz, n_samples)
            for i in range(audio.shape[0]):
                audio_id = data['id'][i]

                if data_cfg.output_subdir is not None:
                    # validation
                    if save_eval:
                        iter_naming = f'{it:09d}'
                    else:
                        iter_naming = 'val-cache'
                    audio_dir = self.log.log_audio(iter_naming,  # write audios
                                                   f'{audio_id}',
                                                   audio[i],
                                                   it=None,
                                                   sample_rate=self.sample_rate,
                                                   subdir=Path(data_cfg.output_subdir)) 
                else:
                    # full test set, usually
                    audio_dir = self.log.log_audio(f'{data_cfg.tag}-sampled',
                                                   f'{audio_id}',
                                                   audio[i],
                                                   it=None,
                                                   sample_rate=self.sample_rate)  

        return Path(audio_dir)

    @torch.inference_mode()
    def eval(self, audio_dir: Path, it: int, data_cfg: DictConfig) -> dict[str, float]:
        with torch.amp.autocast('cuda', enabled=False):
            if local_rank == 0:
                extract(audio_path=audio_dir,
                        output_path=audio_dir / 'cache',
                        device='cuda',
                        batch_size=16,  # btz=16: avoid OOM
                        num_workers=4,
                        skip_video_related=True,  # avoid extracting video related features 
                        audio_length=10) 
                output_metrics = evaluate(gt_audio_cache=Path(data_cfg.gt_cache),
                                          skip_video_related=True, 
                                          pred_audio_cache=audio_dir / 'cache')
                for k, v in output_metrics.items():
                    # pad k to 10 characters
                    # pad v to 10 decimal places
                    self.log.log_scalar(f'{data_cfg.tag}/{k}', v, it)
                    self.log.info(f'{data_cfg.tag}/{k:<10}: {v:.10f}')
                    if k in ["FD-VGG", "FD-PASST", "FD-PANN", "MS-CLAP-Score",
                              "LAION-CLAP-Score", "ISC-PANNS-mean", "KL-PANNS-softmax"]: 
                        if self.use_wandb and local_rank == 0: 
                            wandb.log({f'{data_cfg.tag}/{k}': v}, step=it)
                    
            else:
                output_metrics = None

        return output_metrics

    def save_weights(self, it, save_copy=False):  # only save net's weights
        if local_rank != 0:
            return

        os.makedirs(self.run_path, exist_ok=True)
        if save_copy:
            model_path = self.run_path / f'{self.exp_id}_{it}.pth'
            torch.save(self.network.module.state_dict(), model_path)
            self.log.info(f'Network weights saved to {model_path}.')

        # if last exists, move it to a shadow copy
        model_path = self.run_path / f'{self.exp_id}_last.pth'
        if model_path.exists():
            shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
            model_path.replace(shadow_path)
            self.log.info(f'Network weights shadowed to {shadow_path}.')

        torch.save(self.network.module.state_dict(), model_path)
        self.log.info(f'Network weights saved to {model_path}.')

    def save_checkpoint(self, it, save_copy=False):  # save it, optim, net together
        if local_rank != 0:
            return

        checkpoint = {
            'it': it,
            'weights': self.network.module.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'scheduler': self.scheduler.state_dict(),
            'ema': self.ema.state_dict() if self.ema is not None else None,
        }

        os.makedirs(self.run_path, exist_ok=True)
        if save_copy:
            model_path = self.run_path / f'{self.exp_id}_ckpt_{it}.pth'
            torch.save(checkpoint, model_path)
            self.log.info(f'Checkpoint saved to {model_path}.')

        # if ckpt_last exists, move it to a shadow copy
        model_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
        if model_path.exists():
            shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
            model_path.replace(shadow_path)  # moves the file
            self.log.info(f'Checkpoint shadowed to {shadow_path}.')

        torch.save(checkpoint, model_path)
        self.log.info(f'Checkpoint saved to {model_path}.')

    def get_latest_checkpoint_path(self):
        ckpt_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
        if not ckpt_path.exists():
            info_if_rank_zero(self.log, f'No checkpoint found at {ckpt_path}.')
            return None
        return ckpt_path

    def get_latest_weight_path(self):
        weight_path = self.run_path / f'{self.exp_id}_last.pth'
        if not weight_path.exists():
            self.log.info(f'No weight found at {weight_path}.')
            return None
        return weight_path

    def get_final_ema_weight_path(self):  # for sample (final testing)
        weight_path = self.run_path / f'{self.exp_id}_ema_final.pth'
        if not weight_path.exists():
            self.log.info(f'No weight found at {weight_path}.')
            return None
        return weight_path

    def load_checkpoint(self, path):
        # This method loads everything and should be used to resume training
        map_location = 'cuda:%d' % local_rank
        checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)

        it = checkpoint['it']
        weights = checkpoint['weights']
        optimizer = checkpoint['optimizer']
        scheduler = checkpoint['scheduler']
        if self.ema is not None:
            self.ema.load_state_dict(checkpoint['ema'])
            self.log.info(f'EMA states loaded from step {self.ema.step}')

        map_location = 'cuda:%d' % local_rank
        self.network.module.load_state_dict(weights)   # directly load weights to model
        self.optimizer.load_state_dict(optimizer)
        self.scheduler.load_state_dict(scheduler)

        self.log.info(f'Global iteration {it} loaded.')
        self.log.info('Network weights, optimizer states, and scheduler states loaded.')

        return it

    def load_weights_in_memory(self, src_dict):
        self.network.module.load_weights(src_dict)
        self.log.info('Network weights loaded from memory.')

    def load_weights(self, path):
        # This method loads only the network weight and should be used to load a pretrained model
        map_location = 'cuda:%d' % local_rank
        src_dict = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)

        self.log.info(f'Importing network weights from {path}...')
        self.load_weights_in_memory(src_dict)

    def weights(self):
        return self.network.module.state_dict()

    def enter_train(self):
        self.integrator = self.train_integrator
        self.network.train()
        return self

    def enter_val(self):
        self.network.eval()
        return self