File size: 28,495 Bytes
3a1da90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
"""
trainer.py - wrapper and utility functions for network training
Compute loss, back-prop, update parameters, logging, etc.
"""
import os
from pathlib import Path
from typing import Optional, Union
import torch
import torch.distributed
import torch.optim as optim
from av_bench.evaluate import evaluate
from av_bench.extract import extract
from nitrous_ema import PostHocEMA
from omegaconf import DictConfig
from torch.nn.parallel import DistributedDataParallel as DDP
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.networks import get_mean_audio
from meanaudio.model.sequence_config import CONFIG_16K, CONFIG_44K
from meanaudio.model.utils.features_utils import FeaturesUtils
from meanaudio.model.utils.parameter_groups import get_parameter_groups
from meanaudio.model.utils.sample_utils import log_normal_sample
from meanaudio.utils.dist_utils import (info_if_rank_zero, local_rank, string_if_rank_zero)
from meanaudio.utils.log_integrator import Integrator
from meanaudio.utils.logger import TensorboardLogger
from meanaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator
import wandb
class RunnerFlowMatching:
def __init__(self,
cfg: DictConfig,
log: TensorboardLogger,
run_path: Union[str, Path],
for_training: bool = True,
latent_mean: Optional[torch.Tensor] = None,
latent_std: Optional[torch.Tensor] = None):
self.exp_id = cfg.exp_id
self.use_amp = cfg.amp
self.enable_grad_scaler = cfg.enable_grad_scaler
self.for_training = for_training
self.cfg = cfg
self.use_wandb = cfg.get("use_wandb", False)
if self.use_wandb and local_rank == 0:
wandb.init(
project = "MeanAudio",
name = cfg.exp_id,
# config = cfg
)
# sequence config
self.seq_cfg = CONFIG_16K # for 10s audio
mode = '16k'
self.sample_rate = self.seq_cfg.sampling_rate
self.duration_sec = self.seq_cfg.duration
# model: TODO - move these into networks.py
if cfg['text_encoder_name'] == 'clip':
empty_string_feat = torch.load('./weights/empty_string.pth', weights_only=True)[0]
log.info('Loading empty string feature from ./weights/empty_string.pth for CLIP ...')
elif cfg['text_encoder_name'] == 't5':
empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0]
empty_string_feat_c = torch.load('./weights/empty_string_t5_c.pth', weights_only=True)[0]
log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_t5_c.pth for T5')
elif cfg['text_encoder_name'] == 't5_clap':
empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0] # abandon the first (btz) dim.
empty_string_feat_c = torch.load('./weights/empty_string_clap_c.pth', weights_only=True)[0]
log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_clap_c.pth for T5 and CLAP')
elif cfg['text_encoder_name'] == 't5_clap_cat':
empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0] # abandon the first (btz) dim.
empty_string_feat_c = torch.load('./weights/empty_string_clap_c.pth', weights_only=True)[0]
empty_string_feat_c = torch.cat([empty_string_feat.mean(dim=-2), empty_string_feat_c], dim=-1)
log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_clap_c.pth for T5 and CLAP, concating condition features ... ')
else:
raise NotImplementedError(f'Encoder {cfg["text_encoder_name"]} not implemented')
self.network = DDP(get_mean_audio(cfg.model, # get the model based on base_config.yaml
latent_mean=latent_mean, # mean and std calculated from the dataset
latent_std=latent_std,
empty_string_feat=empty_string_feat,
empty_string_feat_c=empty_string_feat_c,
use_rope=cfg.use_rope,
text_c_dim=cfg.data_dim.text_c_dim).cuda(),
device_ids=[local_rank],
broadcast_buffers=False)
self.fm = FlowMatching(cfg.sampling.min_sigma,
inference_mode=cfg.sampling.method,
num_steps=cfg.sampling.num_steps)
# ema profile
if for_training and cfg.ema.enable and local_rank == 0:
self.ema = PostHocEMA(self.network.module,
sigma_rels=cfg.ema.sigma_rels,
update_every=cfg.ema.update_every,
checkpoint_every_num_steps=cfg.ema.checkpoint_every,
checkpoint_folder=cfg.ema.checkpoint_folder,
step_size_correction=True).cuda()
self.ema_start = cfg.ema.start
else:
self.ema = None
self.rng = torch.Generator(device='cuda')
self.rng.manual_seed(cfg['seed'] + local_rank)
# setting up feature extractors and VAEs
text_encoder_name = cfg['text_encoder_name']
if mode == '16k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_16k_ckpt'],
bigvgan_vocoder_ckpt=cfg['bigvgan_vocoder_ckpt'],
encoder_name=text_encoder_name,
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
elif mode == '44k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_44k_ckpt'],
encoder_name=text_encoder_name,
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
self.features = self.features.cuda().eval()
if cfg.compile:
self.features.compile()
# hyperparameters
self.log_normal_sampling_mean = cfg.sampling.mean
self.log_normal_sampling_scale = cfg.sampling.scale
self.null_condition_probability = cfg.null_condition_probability
self.cfg_strength = cfg.cfg_strength
log.info(f'Initializing flow matching with cfg_strength: {cfg.cfg_strength}')
# setting up logging
self.log = log
self.run_path = Path(run_path)
string_if_rank_zero(self.log, 'model_size',
f'{sum([param.nelement() for param in self.network.parameters()])}')
string_if_rank_zero(
self.log, 'number_of_parameters_that_require_gradient: ',
str(
sum([
param.nelement()
for param in filter(lambda p: p.requires_grad, self.network.parameters())
])))
info_if_rank_zero(self.log, 'torch version: ' + torch.__version__)
self.train_integrator = Integrator(self.log, distributed=True)
self.val_integrator = Integrator(self.log, distributed=True)
# setting up optimizer and loss
if for_training:
self.enter_train()
parameter_groups = get_parameter_groups(self.network, cfg, print_log=(local_rank == 0))
self.optimizer = optim.AdamW(parameter_groups,
lr=cfg['learning_rate'],
weight_decay=cfg['weight_decay'],
betas=[0.9, 0.95],
eps=1e-6 if self.use_amp else 1e-8,
fused=True)
if self.enable_grad_scaler:
self.scaler = torch.amp.GradScaler(init_scale=2048)
self.clip_grad_norm = cfg['clip_grad_norm']
# linearly warmup learning rate
linear_warmup_steps = cfg['linear_warmup_steps']
def warmup(currrent_step: int):
return (currrent_step + 1) / (linear_warmup_steps + 1)
warmup_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)
# setting up learning rate scheduler
if cfg['lr_schedule'] == 'constant':
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda _: 1)
elif cfg['lr_schedule'] == 'poly':
total_num_iter = cfg['iterations']
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer,
lr_lambda=lambda x:
(1 - (x / total_num_iter))**0.9)
elif cfg['lr_schedule'] == 'step':
total_num_iter = cfg['num_iterations']
lr_schedule_steps = [int(0.8 * total_num_iter), int(0.9 * total_num_iter)]
self.log.info(f'Assigning lr steps: {lr_schedule_steps}')
next_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
lr_schedule_steps,
cfg['lr_schedule_gamma'])
else:
raise NotImplementedError
self.scheduler = optim.lr_scheduler.SequentialLR(self.optimizer,
[warmup_scheduler, next_scheduler],
[linear_warmup_steps])
# Logging info
self.log_text_interval = cfg['log_text_interval']
self.log_extra_interval = cfg['log_extra_interval']
self.save_weights_interval = cfg['save_weights_interval']
self.save_checkpoint_interval = cfg['save_checkpoint_interval']
self.save_copy_iterations = cfg['save_copy_iterations']
self.num_iterations = cfg['num_iterations']
# update() is called when we log metrics, within the logger
self.log.batch_timer = TimeEstimator(self.num_iterations, self.log_text_interval)
# update() is called every iteration, in this script
self.log.data_timer = PartialTimeEstimator(self.num_iterations, 1, ema_alpha=0.9)
else:
self.enter_val()
def train_fn(
self,
text_f: torch.Tensor,
text_f_c: torch.Tensor,
a_mean: torch.Tensor,
a_std: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# sample
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn
bs = x1.shape[0] # batch_size * seq_len * num_channels
# normalize the latents
x1 = self.network.module.normalize(x1)
t = log_normal_sample(x1,
generator=self.rng,
m=self.log_normal_sampling_mean,
s=self.log_normal_sampling_scale) # t: (btz)
x0, x1, xt, [text_f, text_f_c] = self.fm.get_x0_xt_c(x1,
t,
Cs=[text_f, text_f_c],
generator=self.rng) # do nothing to conditions
# classifier-free training, seperate guidance for features
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
# samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text_c = (samples < self.null_condition_probability) # here we do null condition together
text_f_c[null_text_c] = self.network.module.empty_string_feat_c
pred_v = self.network(xt, text_f, text_f_c, t)
loss = self.fm.loss(pred_v, x0, x1)
mean_loss = loss.mean()
return x1, loss, mean_loss, t
def val_fn(
self,
text_f: torch.Tensor,
text_f_c: torch.Tensor,
x1: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
bs = x1.shape[0] # batch_size * seq_len * num_channels
# normalize the latents
x1 = self.network.module.normalize(x1)
t = log_normal_sample(x1,
generator=self.rng,
m=self.log_normal_sampling_mean,
s=self.log_normal_sampling_scale)
x0, x1, xt, [text_f, text_f_c] = self.fm.get_x0_xt_c(x1,
t,
Cs=[text_f, text_f_c],
generator=self.rng)
# classifier-free training
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
# samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text_c = (samples < self.null_condition_probability)
text_f_c[null_text_c] = self.network.module.empty_string_feat_c
pred_v = self.network(xt, text_f, text_f_c, t)
loss = self.fm.loss(pred_v, x0, x1)
mean_loss = loss.mean()
return loss, mean_loss, t
def train_pass(self, data, it: int = 0):
if not self.for_training:
raise ValueError('train_pass() should not be called when not training.')
self.enter_train()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
text_f = data['text_features'].cuda(non_blocking=True)
text_f_c = data['text_features_c'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
self.log.data_timer.end()
if it % self.log_extra_interval == 0:
unmasked_text_f = text_f.clone()
unmasked_text_f_c = text_f_c.clone()
x1, loss, mean_loss, t = self.train_fn(text_f, text_f_c, a_mean, a_std)
self.train_integrator.add_dict({'loss': mean_loss})
if it % self.log_text_interval == 0 and it != 0:
lr = self.scheduler.get_last_lr()[0]
self.train_integrator.add_scalar('lr', lr)
self.train_integrator.add_binned_tensor('binned_loss', loss, t)
self.train_integrator.finalize('train', it)
self.train_integrator.reset_except_hooks()
if self.use_wandb and local_rank == 0:
wandb.log(
{
"lr": lr,
"train/loss": mean_loss.detach().float()
},
step=it # explicitly x-axis it
)
# Backward pass
self.optimizer.zero_grad(set_to_none=True)
if self.enable_grad_scaler:
self.scaler.scale(mean_loss).backward()
self.scaler.unscale_(self.optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
else:
mean_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.optimizer.step()
if self.ema is not None and it >= self.ema_start:
self.ema.update()
self.scheduler.step()
self.integrator.add_scalar('grad_norm', grad_norm)
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp,
dtype=torch.bfloat16), torch.inference_mode():
try:
if it % self.log_extra_interval == 0:
# save GT audio
# unnormalize the latents
x1 = self.network.module.unnormalize(x1[0:1])
mel = self.features.decode(x1)
audio = self.features.vocode(mel).cpu()[0] # 1 * num_samples
self.log.log_spectrogram('train', f'spec-gt-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-gt-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
# save audio from sampling
x0 = torch.empty_like(x1[0:1]).normal_(generator=self.rng)
text_f = unmasked_text_f[0:1]
text_f_c = unmasked_text_f_c[0:1] # the first element with same sequence
conditions = self.network.module.preprocess_conditions(text_f, text_f_c)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
t, x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu()[0]
self.log.log_spectrogram('train', f'spec-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
except Exception as e:
self.log.warning(f'Error in extra logging: {e}')
if self.cfg.debug:
raise
# Save network weights and checkpoint if needed
save_copy = it in self.save_copy_iterations
if (it % self.save_weights_interval == 0 and it != 0) or save_copy:
self.save_weights(it)
if it % self.save_checkpoint_interval == 0 and it != 0:
self.save_checkpoint(it, save_copy=save_copy)
self.log.data_timer.start()
@torch.inference_mode()
def validation_pass(self, data, it: int = 0):
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
text_f = data['text_features'].cuda(non_blocking=True)
text_f_c = data['text_features_c'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn # differs from train_pass is that validation_pass pass x1 into val_fn
self.log.data_timer.end()
loss, mean_loss, t = self.val_fn(text_f.clone(), text_f_c.clone(), x1)
self.val_integrator.add_binned_tensor('binned_loss', loss, t)
self.val_integrator.add_dict({'loss': mean_loss})
self.log.data_timer.start()
return mean_loss.detach().float()
@torch.inference_mode()
def inference_pass(self,
data, # batch data
it: int,
data_cfg: DictConfig,
*,
save_eval: bool = True) -> Path:
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
text_f = data['text_features'].cuda(non_blocking=True)
text_f_c = data['text_features_c'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True) # for the shape only
# sample
x0 = torch.empty_like(a_mean).normal_(generator=self.rng)
conditions = self.network.module.preprocess_conditions(text_f, text_f_c)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper(
t, x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu() # (btz, n_samples)
for i in range(audio.shape[0]):
audio_id = data['id'][i]
if data_cfg.output_subdir is not None:
# validation
if save_eval:
iter_naming = f'{it:09d}'
else:
iter_naming = 'val-cache'
audio_dir = self.log.log_audio(iter_naming, # write audios
f'{audio_id}',
audio[i],
it=None,
sample_rate=self.sample_rate,
subdir=Path(data_cfg.output_subdir))
else:
# full test set, usually
audio_dir = self.log.log_audio(f'{data_cfg.tag}-sampled',
f'{audio_id}',
audio[i],
it=None,
sample_rate=self.sample_rate)
return Path(audio_dir)
@torch.inference_mode()
def eval(self, audio_dir: Path, it: int, data_cfg: DictConfig) -> dict[str, float]:
with torch.amp.autocast('cuda', enabled=False):
if local_rank == 0:
extract(audio_path=audio_dir,
output_path=audio_dir / 'cache',
device='cuda',
batch_size=16, # btz=16: avoid OOM
num_workers=4,
skip_video_related=True, # avoid extracting video related features
audio_length=10)
output_metrics = evaluate(gt_audio_cache=Path(data_cfg.gt_cache),
skip_video_related=True,
pred_audio_cache=audio_dir / 'cache')
for k, v in output_metrics.items():
# pad k to 10 characters
# pad v to 10 decimal places
self.log.log_scalar(f'{data_cfg.tag}/{k}', v, it)
self.log.info(f'{data_cfg.tag}/{k:<10}: {v:.10f}')
if k in ["FD-VGG", "FD-PASST", "FD-PANN", "MS-CLAP-Score",
"LAION-CLAP-Score", "ISC-PANNS-mean", "KL-PANNS-softmax"]:
if self.use_wandb and local_rank == 0:
wandb.log({f'{data_cfg.tag}/{k}': v}, step=it)
else:
output_metrics = None
return output_metrics
def save_weights(self, it, save_copy=False): # only save net's weights
if local_rank != 0:
return
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_{it}.pth'
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
# if last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path)
self.log.info(f'Network weights shadowed to {shadow_path}.')
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
def save_checkpoint(self, it, save_copy=False): # save it, optim, net together
if local_rank != 0:
return
checkpoint = {
'it': it,
'weights': self.network.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'ema': self.ema.state_dict() if self.ema is not None else None,
}
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_ckpt_{it}.pth'
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
# if ckpt_last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path) # moves the file
self.log.info(f'Checkpoint shadowed to {shadow_path}.')
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
def get_latest_checkpoint_path(self):
ckpt_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if not ckpt_path.exists():
info_if_rank_zero(self.log, f'No checkpoint found at {ckpt_path}.')
return None
return ckpt_path
def get_latest_weight_path(self):
weight_path = self.run_path / f'{self.exp_id}_last.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def get_final_ema_weight_path(self): # for sample (final testing)
weight_path = self.run_path / f'{self.exp_id}_ema_final.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def load_checkpoint(self, path):
# This method loads everything and should be used to resume training
map_location = 'cuda:%d' % local_rank
checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
it = checkpoint['it']
weights = checkpoint['weights']
optimizer = checkpoint['optimizer']
scheduler = checkpoint['scheduler']
if self.ema is not None:
self.ema.load_state_dict(checkpoint['ema'])
self.log.info(f'EMA states loaded from step {self.ema.step}')
map_location = 'cuda:%d' % local_rank
self.network.module.load_state_dict(weights) # directly load weights to model
self.optimizer.load_state_dict(optimizer)
self.scheduler.load_state_dict(scheduler)
self.log.info(f'Global iteration {it} loaded.')
self.log.info('Network weights, optimizer states, and scheduler states loaded.')
return it
def load_weights_in_memory(self, src_dict):
self.network.module.load_weights(src_dict)
self.log.info('Network weights loaded from memory.')
def load_weights(self, path):
# This method loads only the network weight and should be used to load a pretrained model
map_location = 'cuda:%d' % local_rank
src_dict = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
self.log.info(f'Importing network weights from {path}...')
self.load_weights_in_memory(src_dict)
def weights(self):
return self.network.module.state_dict()
def enter_train(self):
self.integrator = self.train_integrator
self.network.train()
return self
def enter_val(self):
self.network.eval()
return self |