File size: 11,713 Bytes
0bc3ceb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import logging
from tqdm import tqdm
from einops import rearrange
from transformers.cache_utils import Cache
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from torch.nn.utils.parametrizations import weight_norm
from transformers import LlamaModel, LlamaConfig
class LlamaMLP(nn.Module):
def __init__(self, hidden_size, intermediate_size):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = F.silu
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class GPT_warpper(nn.Module):
def __init__(
self,
gpt_config,
num_audio_tokens,
num_text_tokens,
num_vq=4,
**kwargs,
):
super().__init__()
self.logger = logging.getLogger(__name__)
self.gpt = self.build_model(gpt_config)
self.model_dim = self.gpt.config.hidden_size
self.num_vq = num_vq
self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)])
self.emb_text = nn.Embedding(num_text_tokens, self.model_dim)
self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight')
self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)])
def build_model(self, config):
configuration = LlamaConfig(**config)
model = LlamaModel(configuration)
del model.embed_tokens
return model
def get_emb(self, input_ids, text_mask, **kwargs):
emb_text = self.emb_text(input_ids[text_mask][:, 0])
emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)]
emb_code = torch.stack(emb_code, 2).sum(2)
emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype)
emb[text_mask] = emb_text
emb[~text_mask] = emb_code.to(emb.dtype)
return emb
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
):
# With static cache, the `past_key_values` is None
# TODO joao: standardize interface for the different Cache classes and remove of this if
has_static_cache = False
if past_key_values is None:
past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None)
has_static_cache = past_key_values is not None
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
if cache_position is None:
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
else:
cache_position = cache_position[-input_length:]
if has_static_cache:
past_key_values = None
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def generate(
self,
emb,
inputs_ids,
temperature,
eos_token,
attention_mask = None,
max_new_token = 2048,
min_new_token = 0,
LogitsWarpers = [],
LogitsProcessors = [],
infer_text=False,
return_attn=False,
return_hidden=False,
):
with torch.no_grad():
attentions = []
hiddens = []
start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long)
finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool()
temperature = temperature[None].expand(inputs_ids.shape[0], -1)
temperature = rearrange(temperature, "b n -> (b n) 1")
attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device)
if attention_mask is not None:
attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask
for i in tqdm(range(max_new_token)):
model_input = self.prepare_inputs_for_generation(inputs_ids,
outputs.past_key_values if i!=0 else None,
attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True)
if i == 0:
model_input['inputs_embeds'] = emb
else:
if infer_text:
model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0])
else:
code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)]
model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3)
model_input['input_ids'] = None
outputs = self.gpt.forward(**model_input, output_attentions=return_attn)
attentions.append(outputs.attentions)
hidden_states = outputs[0] # 🐻
if return_hidden:
hiddens.append(hidden_states[:, -1])
with P.cached():
if infer_text:
logits = self.head_text(hidden_states)
else:
logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3)
logits = logits[:, -1].float()
if not infer_text:
logits = rearrange(logits, "b c n -> (b n) c")
logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c")
else:
logits_token = inputs_ids[:, start_idx:, 0]
logits = logits / temperature
for logitsProcessors in LogitsProcessors:
logits = logitsProcessors(logits_token, logits)
for logitsWarpers in LogitsWarpers:
logits = logitsWarpers(logits_token, logits)
if i < min_new_token:
logits[:, eos_token] = -torch.inf
scores = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(scores, num_samples=1)
if not infer_text:
idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
finish = finish | (idx_next == eos_token).any(1)
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1)
else:
finish = finish | (idx_next == eos_token).any(1)
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1)
end_idx = end_idx + (~finish).int()
if finish.all():
break
inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())]
inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids
if return_hidden:
hiddens = torch.stack(hiddens, 1)
hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())]
if not finish.all():
self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}')
return {
'ids': inputs_ids,
'attentions': attentions,
'hiddens':hiddens,
} |