File size: 11,713 Bytes
0bc3ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"

import logging
from tqdm import tqdm
from einops import rearrange
from transformers.cache_utils import Cache

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from torch.nn.utils.parametrizations import weight_norm
from transformers import LlamaModel, LlamaConfig
    
    
class LlamaMLP(nn.Module):
    def __init__(self, hidden_size, intermediate_size):
        super().__init__()
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = F.silu

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj
    
    
class GPT_warpper(nn.Module):
    def __init__(
        self, 
        gpt_config, 
        num_audio_tokens,
        num_text_tokens,
        num_vq=4,
        **kwargs,
        ):
        super().__init__()

        self.logger = logging.getLogger(__name__)
        self.gpt = self.build_model(gpt_config)
        self.model_dim = self.gpt.config.hidden_size 

        self.num_vq = num_vq
        self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)])
        self.emb_text = nn.Embedding(num_text_tokens, self.model_dim)
        self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight')
        self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)])

    def build_model(self, config):
        
        configuration = LlamaConfig(**config)
        model = LlamaModel(configuration)
        del model.embed_tokens
        
        return model
    
    def get_emb(self, input_ids, text_mask, **kwargs):

        emb_text = self.emb_text(input_ids[text_mask][:, 0])
        
        emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)]
        emb_code = torch.stack(emb_code, 2).sum(2)
        
        emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype)
        emb[text_mask] = emb_text
        emb[~text_mask] = emb_code.to(emb.dtype)
        
        return emb
    
    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
    ):
        # With static cache, the `past_key_values` is None
        # TODO joao: standardize interface for the different Cache classes and remove of this if
        has_static_cache = False
        if past_key_values is None:
            past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None)
            has_static_cache = past_key_values is not None

        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
                max_cache_length = (
                    torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                    if past_key_values.get_max_length() is not None
                    else None
                )
                cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
            # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {"input_ids": input_ids.contiguous()}

        input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
        if cache_position is None:
            cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
        else:
            cache_position = cache_position[-input_length:]

        if has_static_cache:
            past_key_values = None

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs
    
    def generate(
        self, 
        emb, 
        inputs_ids, 
        temperature, 
        eos_token, 
        attention_mask = None,
        max_new_token = 2048, 
        min_new_token = 0,
        LogitsWarpers = [],
        LogitsProcessors = [],
        infer_text=False,
        return_attn=False,
        return_hidden=False,
    ):
        
        with torch.no_grad():   
        
            attentions = []
            hiddens = []
            
            start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long)
            finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool()
            
            temperature = temperature[None].expand(inputs_ids.shape[0], -1)
            temperature = rearrange(temperature, "b n -> (b n) 1")

            attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device)
            if attention_mask is not None:
                attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask
            
            for i in tqdm(range(max_new_token)):
        
                model_input = self.prepare_inputs_for_generation(inputs_ids, 
                    outputs.past_key_values if i!=0 else None, 
                    attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True)
            
                if i == 0:
                    model_input['inputs_embeds'] = emb
                else:
                    if infer_text:
                        model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0])
                    else:
                        code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)]
                        model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3)
                
                model_input['input_ids'] = None
                outputs = self.gpt.forward(**model_input, output_attentions=return_attn)
                attentions.append(outputs.attentions)
                hidden_states = outputs[0] # 🐻
                if return_hidden:
                    hiddens.append(hidden_states[:, -1])

                with P.cached():
                    if infer_text:
                        logits = self.head_text(hidden_states) 
                    else:
                        logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3)
        
                logits = logits[:, -1].float()

                if not infer_text:
                    logits = rearrange(logits, "b c n -> (b n) c")
                    logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c")
                else:
                    logits_token = inputs_ids[:, start_idx:, 0]
                    
                logits = logits / temperature
                
                for logitsProcessors in LogitsProcessors:
                    logits = logitsProcessors(logits_token, logits)
                    
                for logitsWarpers in LogitsWarpers:
                    logits = logitsWarpers(logits_token, logits)
                    
                if i < min_new_token:
                    logits[:, eos_token] = -torch.inf
                
                scores = F.softmax(logits, dim=-1)
            
                idx_next = torch.multinomial(scores, num_samples=1)
                
                if not infer_text:
                    idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
                    finish = finish | (idx_next == eos_token).any(1)
                    inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1)
                else:
                    finish = finish | (idx_next == eos_token).any(1)
                    inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1)

                end_idx = end_idx + (~finish).int()
            
                if finish.all():
                    break
            
            inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())]
            inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids
            
            if return_hidden:
                hiddens = torch.stack(hiddens, 1)
                hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())]
                    
            if not finish.all():
                self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}')    
                   
            return {
                'ids': inputs_ids, 
                'attentions': attentions,
                'hiddens':hiddens,
            }