Spaces:
Running
Running
File size: 6,954 Bytes
7d1b5a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import torch
from torch import nn
from transformers import LlamaForCausalLM, Cache
from transformers.activations import GELUActivation
from transformers.utils import logging
from .configuration_live_llama import LiveLlamaConfig
from ..modeling_live import build_live, LiveMixin
logger = logging.get_logger(__name__)
class LiveLlamaForCausalLM(LlamaForCausalLM, LiveMixin):
config_class = LiveLlamaConfig
_keys_to_ignore_on_load_missing = ['vision_encoder', 'connector']
def __init__(self, config: LiveLlamaConfig):
super().__init__(config)
self.connector = torch.nn.Sequential(
torch.nn.Linear(config.vision_hidden_size, config.hidden_size, bias=True),
GELUActivation(config.hidden_size),
torch.nn.Linear(config.hidden_size, config.hidden_size, bias=True),
)
def forward(
self,
input_ids: torch.LongTensor = None,
frames: torch.FloatTensor = None,
attention_mask: torch.Tensor = None,
position_ids: torch.LongTensor = None,
past_key_values: list[torch.FloatTensor] = None,
inputs_embeds: torch.FloatTensor = None,
labels: torch.LongTensor = None,
use_cache: bool = None,
output_attentions: bool = None,
output_hidden_states: bool = None,
return_dict: bool = None,
cache_position: torch.LongTensor = None,
**kwargs,
):
if inputs_embeds is None:
inputs_embeds = self.joint_embed(input_ids, frames)
outputs = super().forward(
attention_mask = attention_mask,
position_ids = position_ids,
past_key_values = past_key_values,
inputs_embeds = inputs_embeds,
# labels
use_cache = use_cache,
output_attentions = output_attentions,
output_hidden_states = output_hidden_states,
return_dict = return_dict,
cache_position=cache_position,
)
loss = None
if labels is not None:
logits = outputs[0]
v_mask = input_ids.flatten(0, 1) == self.config.v_placeholder_id
weight = v_mask * self.config.stream_loss_weight + ~v_mask
loss = nn.functional.cross_entropy(logits.flatten(0, 1), labels.flatten(), reduction='none') * weight
loss = loss.sum() / (labels >= 0).sum()
if not return_dict:
return (loss,) + outputs[1:] if loss is not None else outputs
outputs.loss = loss
return outputs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
use_cache=True,
**kwargs,
):
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, past_length :] # NOTE
# NOTE
if inputs_embeds is not None and past_length < inputs_embeds.size(1):
model_inputs = {"inputs_embeds": inputs_embeds[:, past_length:]}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
if cache_position is None:
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
elif use_cache:
cache_position = cache_position[-input_length:]
model_inputs.update(
{
"position_ids": position_ids, # 长度为新的inputs,从past开始
"cache_position": cache_position, # 没有被cache的区域
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask, # cache + input的长度
}
)
return model_inputs
def build_live_llama(**kwargs):
return build_live(config_class=LiveLlamaConfig, model_class=LiveLlamaForCausalLM, **kwargs)
if __name__ == '__main__':
from ..arguments_live import LiveOnePlusTrainingArguments
print(LiveOnePlusTrainingArguments().to_dict())
model, tokenizer = build_live_llama(is_training=True, **LiveOnePlusTrainingArguments().to_dict())
print(model.config, tokenizer)
|