File size: 6,954 Bytes
7d1b5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
from torch import nn
from transformers import LlamaForCausalLM, Cache
from transformers.activations import GELUActivation
from transformers.utils import logging

from .configuration_live_llama import LiveLlamaConfig
from ..modeling_live import build_live, LiveMixin

logger = logging.get_logger(__name__)

class LiveLlamaForCausalLM(LlamaForCausalLM, LiveMixin):
    config_class = LiveLlamaConfig
    _keys_to_ignore_on_load_missing = ['vision_encoder', 'connector']

    def __init__(self, config: LiveLlamaConfig):
        super().__init__(config)
        self.connector = torch.nn.Sequential(
            torch.nn.Linear(config.vision_hidden_size, config.hidden_size, bias=True),
            GELUActivation(config.hidden_size),
            torch.nn.Linear(config.hidden_size, config.hidden_size, bias=True),
        )

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        frames: torch.FloatTensor = None,
        attention_mask: torch.Tensor = None,
        position_ids: torch.LongTensor = None,
        past_key_values: list[torch.FloatTensor] = None,
        inputs_embeds: torch.FloatTensor = None,
        labels: torch.LongTensor = None,
        use_cache: bool = None,
        output_attentions: bool = None,
        output_hidden_states: bool = None,
        return_dict: bool = None,
        cache_position: torch.LongTensor = None,
        **kwargs,
    ):
        if inputs_embeds is None:
            inputs_embeds = self.joint_embed(input_ids, frames)
        outputs = super().forward(
            attention_mask = attention_mask,
            position_ids = position_ids,
            past_key_values = past_key_values,
            inputs_embeds = inputs_embeds,
            # labels
            use_cache = use_cache,
            output_attentions = output_attentions,
            output_hidden_states = output_hidden_states,
            return_dict = return_dict,
            cache_position=cache_position,
        )

        loss = None
        if labels is not None:
            logits = outputs[0]
            v_mask = input_ids.flatten(0, 1) == self.config.v_placeholder_id
            weight = v_mask * self.config.stream_loss_weight + ~v_mask
            loss = nn.functional.cross_entropy(logits.flatten(0, 1), labels.flatten(), reduction='none') * weight
            loss = loss.sum() / (labels >= 0).sum()

        if not return_dict:
            return (loss,) + outputs[1:] if loss is not None else outputs

        outputs.loss = loss
        return outputs

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        use_cache=True,
        **kwargs,
    ):  
        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
                max_cache_length = (
                    torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                    if past_key_values.get_max_length() is not None
                    else None
                )
                cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
            # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, past_length :] # NOTE

        # NOTE
        if inputs_embeds is not None and past_length < inputs_embeds.size(1):
            model_inputs = {"inputs_embeds": inputs_embeds[:, past_length:]}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {"input_ids": input_ids.contiguous()}

        input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
        if cache_position is None:
            cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
        elif use_cache:
            cache_position = cache_position[-input_length:]

        model_inputs.update(
            {
                "position_ids": position_ids, # 长度为新的inputs,从past开始
                "cache_position": cache_position, # 没有被cache的区域
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask, # cache + input的长度
            }
        )
        return model_inputs
    
def build_live_llama(**kwargs):
    return build_live(config_class=LiveLlamaConfig, model_class=LiveLlamaForCausalLM, **kwargs)

if __name__ == '__main__':
    from ..arguments_live import LiveOnePlusTrainingArguments
    print(LiveOnePlusTrainingArguments().to_dict())
    model, tokenizer = build_live_llama(is_training=True, **LiveOnePlusTrainingArguments().to_dict())
    print(model.config, tokenizer)