File size: 9,680 Bytes
5282eae
 
7c708d1
5282eae
 
 
 
 
 
ab6ff71
5282eae
 
 
 
 
69242c7
5282eae
 
 
 
 
 
 
 
 
 
 
 
 
f407227
a230c75
5282eae
a230c75
 
5282eae
 
 
 
 
 
 
8fedd76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5282eae
8fedd76
 
5282eae
 
 
 
 
 
 
 
 
 
 
ab6ff71
5282eae
 
 
 
 
 
 
 
 
 
 
d3fbc73
 
 
5282eae
 
f533bf3
 
5282eae
 
 
 
7c708d1
585d195
 
d3fbc73
ab6ff71
 
d3fbc73
 
5282eae
 
 
 
 
 
 
 
 
 
 
 
 
 
ab6ff71
 
d3fbc73
5282eae
 
 
ab6ff71
5282eae
 
 
 
 
f533bf3
5282eae
 
 
 
 
 
 
 
 
ab6ff71
 
 
 
 
 
 
 
 
 
5282eae
ab6ff71
 
 
 
 
 
5282eae
 
 
 
 
ed32995
5282eae
ed32995
 
5282eae
 
 
 
ed32995
 
5282eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bddbe2
 
 
 
5282eae
 
 
 
 
 
 
1bddbe2
5282eae
 
1bddbe2
5282eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
os.system("cd open_flamingo && pip install .")
os.system("cd transformers && pip install .")
import numpy as np
import torch
from PIL import Image

from open_flamingo.train.distributed import init_distributed_device, world_info_from_env
import string
import cv2


import gradio as gr
import torch
from PIL import Image
from huggingface_hub import hf_hub_download, login

from open_flamingo.src.factory import create_model_and_transforms
flamingo, image_processor, tokenizer, vis_embed_size = create_model_and_transforms(
        "ViT-L-14",
        "datacomp_xl_s13b_b90k",
        "facebook/opt-350m",
        "facebook/opt-350m",
        add_visual_grounding=True,
        location_token_num=1000,
        add_visual_token = True,
        use_format_v2 = True,
    )

checkpoint_path = hf_hub_download("chendl/mm", "checkpoint_opt350m_v2.pt")
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model_state_dict = {}
for key in checkpoint.keys():
    model_state_dict[key.replace("module.", "")] = checkpoint[key]
if "vision_encoder.logit_scale"in model_state_dict:
    # previous checkpoint has some unnecessary weights
    del model_state_dict["vision_encoder.logit_scale"]
    del model_state_dict["vision_encoder.visual.proj"]
    del model_state_dict["vision_encoder.visual.ln_post.weight"]
    del model_state_dict["vision_encoder.visual.ln_post.bias"]
flamingo.load_state_dict(model_state_dict, strict=True)
def get_outputs(
    model,
    batch_images,
    attention_mask,
    max_generation_length,
    min_generation_length,
    num_beams,
    length_penalty,
    input_ids,
    image_start_index_list=None,
    image_nums=None,
    bad_words_ids=None,
):
    #  and torch.cuda.amp.autocast(dtype=torch.float16)
    with torch.inference_mode():
        outputs = model.generate(
            batch_images,
            input_ids,
            attention_mask=attention_mask,
            max_new_tokens=max_generation_length,
            min_length=min_generation_length,
            num_beams=num_beams,
            length_penalty=length_penalty,
            image_start_index_list=image_start_index_list,
            image_nums=image_nums,
            bad_words_ids=bad_words_ids,
        )

    outputs = outputs[:, len(input_ids[0]) :]
    return outputs

def generate(
    idx,
    image,
    text,
    vis_embed_size=256,
    rank=0,
    world_size=1,
):
    if image is None:
        raise gr.Error("Please upload an image.")
    flamingo.eval()
    loc_token_ids = []
    for i in range(1000):
        loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    endofchunk_token_id = tokenizer("<|endofchunk|>", add_special_tokens=False)["input_ids"][-1]
    endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
    pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
    bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
    all_ids = set(range(flamingo.lang_encoder.lm_head.out_features))
    bad_words_ids = list(all_ids - set(loc_token_ids))
    bad_words_ids = [[b] for b in bad_words_ids]
    loc_word_ids = list(set(loc_token_ids))
    loc_word_ids = [[b] for b in loc_word_ids]

    min_loc_token_id = min(loc_token_ids)
    max_loc_token_id = max(loc_token_ids)
    image_ori = image
    image = image.convert("RGB")
    width = image.width
    height = image.height
    image = image.resize((224, 224))
    batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
    if idx == 1:
        prompt = [f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#obj#|>{text.rstrip('.')}<|#loc#|>"]
        bad_words_ids = None
        max_generation_length = 5
    else:
        prompt = [f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text.rstrip('.')}"]
        bad_words_ids = loc_word_ids
        max_generation_length = 100
    encodings = tokenizer(
        prompt,
        padding="longest",
        truncation=True,
        return_tensors="pt",
        max_length=2000,
    )
    input_ids = encodings["input_ids"]
    attention_mask = encodings["attention_mask"]
    image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
    image_start_index_list = [[x] for x in image_start_index_list]
    image_nums = [1] * len(input_ids)
    outputs = get_outputs(
        model=flamingo,
        batch_images=batch_images,
        attention_mask=attention_mask,
        max_generation_length=max_generation_length,
        min_generation_length=4,
        num_beams=1,
        length_penalty=1.0,
        input_ids=input_ids,
        bad_words_ids=bad_words_ids,
        image_start_index_list=image_start_index_list,
        image_nums=image_nums,
    )
    box = []
    out_image = image_ori
    for o in outputs[0]:
        if o >= min_loc_token_id and o <= max_loc_token_id:
            box.append(o.item() - min_loc_token_id)
            if len(box) == 4:
                break
    # else:
    #     tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
    #     tqdm.write(f"prompt: {prompt}")

    if len(box) == 4:
        img = cv2.cvtColor(np.array(image_ori), cv2.COLOR_RGB2BGR)
        out = cv2.rectangle(img, (int(box[0] * width / 1000), int(box[1] * height / 1000)),
                            (int(box[2] * width / 1000), int(box[3] * height / 1000)), color=(255, 0, 255), thickness=2)
        out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
        out_image = Image.fromarray(out)
    # else:
    #     tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
    #     tqdm.write(f"prompt: {prompt}")

    gen_text = tokenizer.batch_decode(outputs)
    if idx == 1:
        return f"Output:{gen_text}", out_image
    elif idx == 2:
        return (f"Question: {text.strip()} Answer: {gen_text}")
    else:
        return (f"Output:{gen_text}")


with gr.Blocks() as demo:
    gr.Markdown(
        """
    🍜 Object Centric Pretraining Demo  

    In this demo we showcase the in-context learning and grounding capabilities of the Object-Centric Pretrained model, a large multimodal model. Note that we add two additional demonstrations to the ones presented to improve the demo experience.
    The model is trained on an interleaved mixture of text, images and bounding box and is able to generate text conditioned on sequences of images/text.
    """
    )

    with gr.Accordion("See terms and conditions"):
        gr.Markdown(
            """**Please read the following information carefully before proceeding.**This demo does NOT store any personal information on its users, and it does NOT store user queries.""")

    with gr.Tab("📷 Image Captioning"):
        with gr.Row():


            query_image = gr.Image(type="pil")
        with gr.Row():
            chat_input = gr.Textbox(lines=1, label="Chat Input")
        text_output = gr.Textbox(value="Output:", label="Model output")

        run_btn = gr.Button("Run model")



        def on_click_fn(img,text): return generate(0, img, text)

        run_btn.click(on_click_fn, inputs=[query_image,chat_input], outputs=[text_output])

    with gr.Tab("🦓 Grounding"):
        with gr.Row():
            with gr.Column(scale=1):
                query_image = gr.Image(type="pil")
            with gr.Column(scale=1):
                out_image = gr.Image(type="pil")
        with gr.Row():
            chat_input = gr.Textbox(lines=1, label="Chat Input")
        text_output = gr.Textbox(value="Output:", label="Model output")

        run_btn = gr.Button("Run model")


        def on_click_fn(img, text): return generate(1, img, text)


        run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output, out_image])

    with gr.Tab("🔢 Counting objects"):
        with gr.Row():
            query_image = gr.Image(type="pil")
        with gr.Row():
            chat_input = gr.Textbox(lines=1, label="Chat Input")
        text_output = gr.Textbox(value="Output:", label="Model output")

        run_btn = gr.Button("Run model")


        def on_click_fn(img,text): return generate(0, img, text)


        run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output])

    with gr.Tab("🕵️ Visual Question Answering"):
        with gr.Row():
            query_image = gr.Image(type="pil")
        with gr.Row():
            question = gr.Textbox(lines=1, label="Question")
        text_output = gr.Textbox(value="Output:", label="Model output")

        run_btn = gr.Button("Run model")


        def on_click_fn(img, txt): return generate(2, img, txt)


        run_btn.click(
            on_click_fn, inputs=[query_image, question], outputs=[text_output]
        )

    with gr.Tab("🌎 Custom"):
        gr.Markdown(
            """### Customize the demonstration by uploading your own images and text samples. 
                    ### **Note: Any text prompt you use will be prepended with an 'Output:', so you don't need to include it in your prompt.**"""
        )
        with gr.Row():
            query_image = gr.Image(type="pil")
        with gr.Row():
            question = gr.Textbox(lines=1, label="Question")
        text_output = gr.Textbox(value="Output:", label="Model output")

        run_btn = gr.Button("Run model")


        def on_click_fn(img, txt): return generate(2, img, txt)


        run_btn.click(
            on_click_fn, inputs=[query_image, question], outputs=[text_output]
        )

demo.queue(concurrency_count=1)
demo.launch()