File size: 11,211 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
""" Evaluation script for RAG models."""

import argparse
import ast
import logging
import os
import sys

import pandas as pd
import torch
from tqdm import tqdm

from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging


sys.path.append(os.path.join(os.getcwd()))  # noqa: E402 # isort:skip
from utils_rag import exact_match_score, f1_score  # noqa: E402 # isort:skip


logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

transformers_logging.set_verbosity_info()


def infer_model_type(model_name_or_path):
    if "token" in model_name_or_path:
        return "rag_token"
    if "sequence" in model_name_or_path:
        return "rag_sequence"
    if "bart" in model_name_or_path:
        return "bart"
    return None


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    return max(metric_fn(prediction, gt) for gt in ground_truths)


def get_scores(args, preds_path, gold_data_path):
    hypos = [line.strip() for line in open(preds_path, "r").readlines()]
    answers = []

    if args.gold_data_mode == "qa":
        data = pd.read_csv(gold_data_path, sep="\t", header=None)
        for answer_list in data[1]:
            ground_truths = ast.literal_eval(answer_list)
            answers.append(ground_truths)
    else:
        references = [line.strip() for line in open(gold_data_path, "r").readlines()]
        answers = [[reference] for reference in references]

    f1 = em = total = 0
    for prediction, ground_truths in zip(hypos, answers):
        total += 1
        em += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
        f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)

    em = 100.0 * em / total
    f1 = 100.0 * f1 / total

    logger.info(f"F1: {f1:.2f}")
    logger.info(f"EM: {em:.2f}")


def get_precision_at_k(args, preds_path, gold_data_path):
    k = args.k
    hypos = [line.strip() for line in open(preds_path, "r").readlines()]
    references = [line.strip() for line in open(gold_data_path, "r").readlines()]

    em = total = 0
    for hypo, reference in zip(hypos, references):
        hypo_provenance = set(hypo.split("\t")[:k])
        ref_provenance = set(reference.split("\t"))
        total += 1
        em += len(hypo_provenance & ref_provenance) / k

    em = 100.0 * em / total
    logger.info(f"Precision@{k}: {em: .2f}")


def evaluate_batch_retrieval(args, rag_model, questions):
    def strip_title(title):
        if title.startswith('"'):
            title = title[1:]
        if title.endswith('"'):
            title = title[:-1]
        return title

    retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
        questions,
        return_tensors="pt",
        padding=True,
        truncation=True,
    )["input_ids"].to(args.device)

    question_enc_outputs = rag_model.rag.question_encoder(retriever_input_ids)
    question_enc_pool_output = question_enc_outputs[0]

    result = rag_model.retriever(
        retriever_input_ids,
        question_enc_pool_output.cpu().detach().to(torch.float32).numpy(),
        prefix=rag_model.rag.generator.config.prefix,
        n_docs=rag_model.config.n_docs,
        return_tensors="pt",
    )
    all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
    provenance_strings = []
    for docs in all_docs:
        provenance = [strip_title(title) for title in docs["title"]]
        provenance_strings.append("\t".join(provenance))
    return provenance_strings


def evaluate_batch_e2e(args, rag_model, questions):
    with torch.no_grad():
        inputs_dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
            questions, return_tensors="pt", padding=True, truncation=True
        )

        input_ids = inputs_dict.input_ids.to(args.device)
        attention_mask = inputs_dict.attention_mask.to(args.device)
        outputs = rag_model.generate(  # rag_model overwrites generate
            input_ids,
            attention_mask=attention_mask,
            num_beams=args.num_beams,
            min_length=args.min_length,
            max_length=args.max_length,
            early_stopping=False,
            num_return_sequences=1,
            bad_words_ids=[[0, 0]],  # BART likes to repeat BOS tokens, dont allow it to generate more than one
        )
        answers = rag_model.retriever.generator_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        if args.print_predictions:
            for q, a in zip(questions, answers):
                logger.info("Q: {} - A: {}".format(q, a))

        return answers


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_type",
        choices=["rag_sequence", "rag_token", "bart"],
        type=str,
        help=(
            "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"
            " model_name_or_path"
        ),
    )
    parser.add_argument(
        "--index_name",
        default=None,
        choices=["exact", "compressed", "legacy"],
        type=str,
        help="RAG model retriever type",
    )
    parser.add_argument(
        "--index_path",
        default=None,
        type=str,
        help="Path to the retrieval index",
    )
    parser.add_argument("--n_docs", default=5, type=int, help="Number of retrieved docs")
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pretrained checkpoints or model identifier from huggingface.co/models",
    )
    parser.add_argument(
        "--eval_mode",
        choices=["e2e", "retrieval"],
        default="e2e",
        type=str,
        help=(
            "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"
            " precision@k."
        ),
    )
    parser.add_argument("--k", default=1, type=int, help="k for the precision@k calculation")
    parser.add_argument(
        "--evaluation_set",
        default=None,
        type=str,
        required=True,
        help="Path to a file containing evaluation samples",
    )
    parser.add_argument(
        "--gold_data_path",
        default=None,
        type=str,
        required=True,
        help="Path to a tab-separated file with gold samples",
    )
    parser.add_argument(
        "--gold_data_mode",
        default="qa",
        type=str,
        choices=["qa", "ans"],
        help=(
            "Format of the gold data file"
            "qa - a single line in the following format: question [tab] answer_list"
            "ans - a single line of the gold file contains the expected answer string"
        ),
    )
    parser.add_argument(
        "--predictions_path",
        type=str,
        default="predictions.txt",
        help="Name of the predictions file, to be stored in the checkpoints directory",
    )
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument(
        "--eval_batch_size",
        default=8,
        type=int,
        help="Batch size per GPU/CPU for evaluation.",
    )
    parser.add_argument(
        "--recalculate",
        help="Recalculate predictions even if the prediction file exists",
        action="store_true",
    )
    parser.add_argument(
        "--num_beams",
        default=4,
        type=int,
        help="Number of beams to be used when generating answers",
    )
    parser.add_argument("--min_length", default=1, type=int, help="Min length of the generated answers")
    parser.add_argument("--max_length", default=50, type=int, help="Max length of the generated answers")

    parser.add_argument(
        "--print_predictions",
        action="store_true",
        help="If True, prints predictions while evaluating.",
    )
    parser.add_argument(
        "--print_docs",
        action="store_true",
        help="If True, prints docs retried while generating.",
    )
    args = parser.parse_args()
    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return args


def main(args):
    model_kwargs = {}
    if args.model_type is None:
        args.model_type = infer_model_type(args.model_name_or_path)
        assert args.model_type is not None
    if args.model_type.startswith("rag"):
        model_class = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration
        model_kwargs["n_docs"] = args.n_docs
        if args.index_name is not None:
            model_kwargs["index_name"] = args.index_name
        if args.index_path is not None:
            model_kwargs["index_path"] = args.index_path
    else:
        model_class = BartForConditionalGeneration

    checkpoints = (
        [f.path for f in os.scandir(args.model_name_or_path) if f.is_dir()]
        if args.eval_all_checkpoints
        else [args.model_name_or_path]
    )

    logger.info("Evaluate the following checkpoints: %s", checkpoints)

    score_fn = get_scores if args.eval_mode == "e2e" else get_precision_at_k
    evaluate_batch_fn = evaluate_batch_e2e if args.eval_mode == "e2e" else evaluate_batch_retrieval

    for checkpoint in checkpoints:
        if os.path.exists(args.predictions_path) and (not args.recalculate):
            logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path))
            score_fn(args, args.predictions_path, args.gold_data_path)
            continue

        logger.info("***** Running evaluation for {} *****".format(checkpoint))
        logger.info("  Batch size = %d", args.eval_batch_size)
        logger.info("  Predictions will be stored under {}".format(args.predictions_path))

        if args.model_type.startswith("rag"):
            retriever = RagRetriever.from_pretrained(checkpoint, **model_kwargs)
            model = model_class.from_pretrained(checkpoint, retriever=retriever, **model_kwargs)
            model.retriever.init_retrieval()
        else:
            model = model_class.from_pretrained(checkpoint, **model_kwargs)
        model.to(args.device)

        with open(args.evaluation_set, "r") as eval_file, open(args.predictions_path, "w") as preds_file:
            questions = []
            for line in tqdm(eval_file):
                questions.append(line.strip())
                if len(questions) == args.eval_batch_size:
                    answers = evaluate_batch_fn(args, model, questions)
                    preds_file.write("\n".join(answers) + "\n")
                    preds_file.flush()
                    questions = []
            if len(questions) > 0:
                answers = evaluate_batch_fn(args, model, questions)
                preds_file.write("\n".join(answers))
                preds_file.flush()

            score_fn(args, args.predictions_path, args.gold_data_path)


if __name__ == "__main__":
    args = get_args()
    main(args)