File size: 7,854 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import webdataset as wds
import glob
import os
from tqdm import tqdm
import orjson as json
import itertools
from PIL import Image
import numpy as np
from typing import List
import cv2
import random

class Generator():
    def __init__(self, dataset_name):
        self.dataset_name = dataset_name
        self.is_end = False

class CC3MGenerator(Generator):
    def __init__(self, root: str, dataset_name="cc3m"):
        super().__init__(dataset_name=dataset_name)
        self.tars = glob.glob(os.path.join(root, "cc3m_*", "*.tar"))

    def __len__(self):
        return 3000000

    def __iter__(self):
        for tar in self.tars:
            dataset = wds.WebDataset(tar).decode("pilrgb").to_tuple("jpg;png;jpeg", "txt")
            for data in dataset:
                yield [self.dataset_name] + list(data)
        self.is_end = True

class CC12MGenerator(CC3MGenerator):
    def __init__(self, root: str):
        super().__init__(root, "cc12m")
        self.tars = glob.glob(os.path.join(root, "*.tar"))

    def __len__(self):
        return 12000000

class COCOGenerator(Generator):
    def __init__(self, anno: str, image_dir):
        super().__init__(dataset_name="coco")
        data = json.loads(open(anno).read())
        self.annotations = data["annotations"]
        self.image_id_to_filename = {}
        for image in data["images"]:
            file_name = image["file_name"]
            image_id = image["id"]
            self.image_id_to_filename[image_id] = os.path.join(image_dir, file_name)

    def __len__(self):
        return len(self.annotations)

    def __iter__(self):
        for anno in self.annotations:
            image_id = anno["image_id"]
            caption = anno["caption"]
            try:
                image = Image.open(self.image_id_to_filename[image_id])
            except:
                continue
            yield [self.dataset_name, image, caption]
        self.is_end = True


class KarpathyCOCOGenerator(Generator):
    def __init__(self, anno="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/tools/coco_karpathy_train.json", image_dir="/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco/images"):
        super().__init__(dataset_name="coco")
        data = json.loads(open(anno).read())
        self.annotations = data
        self.image_id_to_filename = {}
        for d in data:
            self.image_id_to_filename[d["image_id"]] = os.path.join(image_dir, d["image"])

    def __len__(self):
        return len(self.annotations)

    def __iter__(self):
        for anno in self.annotations:
            image_id = anno["image_id"]
            caption = anno["caption"]
            try:
                image = Image.open(self.image_id_to_filename[image_id])
            except:
                print(self.image_id_to_filename[image_id])
            yield [self.dataset_name, image, caption]
        self.is_end = True


class VisualGenomeGenerator(Generator):
    def __init__(self, root: str):
        super().__init__(dataset_name="vg")
        data = json.loads(open(os.path.join(root, "region_descriptions.json")).read())
        image_data = json.loads(open(os.path.join(root, "image_data.json")).read())
        self.image_id_to_filename = {}
        self.image_id_to_wh = {}
        for image in image_data:
            image_id = image["image_id"]
            subfolder, filename = image['url'].split("/")[-2:]
            self.image_id_to_filename[image_id] = os.path.join(root, subfolder, filename)
            self.image_id_to_wh[image_id] = (image["width"], image["height"])
        self.regions = []
        total = 0
        total_image = 0
        used_image = 0
        for xx in data:
            total_image += 1
            flag = False
            for region in xx['regions']:
                total += 1
                region_w = int(region["width"])
                region_h = int(region["height"])
                x = int(region["x"])
                y = int(region["y"])
                image_w = self.image_id_to_wh[region["image_id"]][0]
                image_h = self.image_id_to_wh[region["image_id"]][1]
                region_w /= image_w
                region_h /= image_h
                x /= image_w
                y /= image_h
                if region_w * region_h < 0.1:
                    continue
                if " is" in region["phrase"] or " are" in region["phrase"]:
                    continue
                region["norm_xywh"] = (x, y, region_w, region_h)
                self.regions.append(region)
                flag = True
            if flag:
                used_image += 1
        random.shuffle(self.regions)
        print("valid region", len(self.regions), total, len(self.regions) / total)
        print("valid image", used_image, total_image, used_image / total_image)

    def __len__(self):
        return len(self.regions)

    def __iter__(self):
        for region in self.regions:
            image_id = region["image_id"]
            phrase = region["phrase"]
            try:
                image = Image.open(self.image_id_to_filename[image_id])
            except:
                continue
            image = image.resize((224, 224))
            x, y, region_w, region_h = region["norm_xywh"]
            x1 = int(x * 224)
            y1 = int(y * 224)
            x2 = int(x1 + region_w * 224)
            y2 = int(y1 + region_h * 224)
            # open_cv_image = np.array(image)
            # # Convert RGB to BGR
            # open_cv_image = open_cv_image[:, :, ::-1].copy()
            # open_cv_image = cv2.rectangle(open_cv_image, (x1, y1), (x2, y2), (255, 0, 0), 2)
            # cv2.imwrite("vg.jpg", open_cv_image)
            # import pdb; pdb.set_trace()
            yield [self.dataset_name, image, phrase, np.array([x1, y1, x2, y2]), image_id]
        self.is_end = True

class ShuffleGenerator():
    def __init__(self, generators: List[Generator], p: List[int]):
        self.generators = generators
        self.p = list(np.array(p) / sum(p))
        self.ids = list(range(len(self.generators)))
        print("rebalance", self.ids, self.p)

    def __len__(self):
        return sum([len(g) for g in self.generators])

    def __iter__(self):
        while True:
            if len(self.ids) == 0:
                break
            id = np.random.choice(self.ids, p=self.p)
            gen = self.generators[id]
            if gen.is_end:
                print(gen.dataset_name, "is all done")
                del self.ids[id]
                del self.p[id]
                self.p = list(np.array(self.p) / sum(p))
                print("rebalance", self.ids, self.p)
            else:
                return iter(gen)


if __name__ == "__main__":
    OUT_DIR = "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/vg_withBox_wds"
    os.makedirs(OUT_DIR, exist_ok=True)
    # cc3m_generator = CC3MGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/cc3m")
    # cc12m_generator = CC12MGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/cc12m/tars")
    # coco_generator = KarpathyCOCOGenerator()
    visual_genome_generator = VisualGenomeGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch/datasets/raw/vg")
    # generators = [cc3m_generator, cc12m_generator, coco_generator, visual_genome_generator]
    # p = [len(generator) for generator in generators]
    # dataset = ShuffleGenerator(generators, p)

    with wds.ShardWriter(os.path.join(OUT_DIR, "%05d.tar"), maxcount=8500) as sink:
        sink.verbose = False
        pbar = tqdm(visual_genome_generator)
        for i, data in enumerate(pbar):
            dataset_name, image, caption, xyxy, image_id = data
            sink.write({"__key__": f"{dataset_name}_{i}_containBox", "jpg": image, "txt": caption, "xyxy.pyd": xyxy})
            if i % 200 == 0:
                tqdm.write(f"{caption} {xyxy}")