File size: 28,843 Bytes
d18c4dc
 
 
 
 
 
 
 
 
763c565
d18c4dc
 
 
 
 
 
 
 
ad3d275
d18c4dc
 
 
 
ccf3425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18c4dc
ccf3425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f982d
d18c4dc
30f982d
 
 
 
d18c4dc
 
 
 
 
 
 
 
 
 
30f982d
d18c4dc
 
 
 
 
 
 
 
 
 
30f982d
d18c4dc
 
30f982d
d18c4dc
30f982d
 
 
 
 
d18c4dc
 
d4fc65d
ccf3425
d18c4dc
 
 
 
 
d4fc65d
d18c4dc
d4fc65d
d18c4dc
 
 
 
 
d4fc65d
d18c4dc
 
 
 
d4fc65d
d18c4dc
d4fc65d
 
 
d18c4dc
 
 
 
d4fc65d
 
 
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f982d
 
 
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf3425
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f982d
d18c4dc
 
 
30f982d
 
 
 
 
d18c4dc
 
30f982d
 
d18c4dc
30f982d
 
d18c4dc
30f982d
 
d18c4dc
30f982d
ad3d275
30f982d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad3d275
30f982d
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f982d
d18c4dc
 
30f982d
d18c4dc
d11207d
f4befb6
7ca35b4
763c565
7ca35b4
d11207d
763c565
 
 
 
 
 
 
 
790aa3b
763c565
 
 
fb7b761
763c565
d11207d
fb7b761
763c565
 
 
 
 
fb7b761
d11207d
763c565
fb7b761
 
 
7ca35b4
fb7b761
 
 
763c565
fb7b761
 
 
 
 
 
 
72013e5
763c565
 
 
fb7b761
763c565
fb7b761
 
 
763c565
fb7b761
 
 
 
 
 
 
 
 
763c565
7ca35b4
 
763c565
7ca35b4
763c565
7ca35b4
fb7b761
 
763c565
7ca35b4
763c565
fb7b761
bfe9507
d11207d
763c565
 
 
 
 
d11207d
763c565
 
 
d11207d
763c565
d11207d
bfe9507
f196cac
d18c4dc
 
 
 
 
 
f4befb6
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
f4befb6
d18c4dc
f4befb6
 
 
 
 
 
81c0f3c
f4befb6
81c0f3c
d18c4dc
 
 
f4befb6
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc40f8d
 
 
 
 
 
 
 
 
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf3425
 
 
737c883
ccf3425
 
 
 
 
 
 
 
d18c4dc
 
ccf3425
d18c4dc
 
 
 
 
 
 
 
 
763c565
 
 
 
 
 
 
d18c4dc
 
 
 
f4befb6
 
d18c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d39a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel
import gradio as gr
import re
import os
import json
import chardet
from sklearn.metrics import precision_score, recall_score, f1_score
import time
from functools import lru_cache  # 添加这行导入
# ======================== 数据库模块 ========================
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from contextlib import contextmanager
import logging
import networkx as nx
from pyvis.network import Network
import pandas as pd
import matplotlib.pyplot as plt

# 配置日志
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# 使用SQLAlchemy的连接池来管理数据库连接
DATABASE_URL = "mysql+pymysql://user:password@host/dbname"  # 请根据实际情况修改连接字符串

# 创建引擎(连接池)
engine = create_engine(DATABASE_URL, pool_size=10, max_overflow=20, echo=True)

# 创建session类
Session = sessionmaker(bind=engine)

@contextmanager
def get_db_connection():
    """
    使用上下文管理器获取数据库连接
    """
    session = None
    try:
        session = Session()  # 从连接池中获取一个连接
        logging.info("✅ 数据库连接已建立")
        yield session  # 使用session进行数据库操作
    except Exception as e:
        logging.error(f"❌ 数据库操作时发生错误: {e}")
        if session:
            session.rollback()  # 回滚事务
    finally:
        if session:
            try:
                session.commit()  # 提交事务
                logging.info("✅ 数据库事务已提交")
            except Exception as e:
                logging.error(f"❌ 提交事务时发生错误: {e}")
            finally:
                session.close()  # 关闭会话,释放连接
                logging.info("✅ 数据库连接已关闭")

def save_to_db(table, data):
    """
    将数据保存到数据库
    :param table: 表名
    :param data: 数据字典
    """
    try:
        valid_tables = ["entities", "relations"]  # 只允许保存到这些表
        if table not in valid_tables:
            raise ValueError(f"Invalid table: {table}")
        
        with get_db_connection() as conn:
            if conn:
                # 这里的操作假设使用了ORM模型来处理插入,实际根据你数据库的表结构来调整
                table_model = get_table_model(table)  # 假设你有一个方法来根据表名获得ORM模型
                new_record = table_model(**data)
                conn.add(new_record)
                conn.commit()  # 提交事务
    except Exception as e:
        logging.error(f"❌ 保存数据时发生错误: {e}")
        return False
    return True

def get_table_model(table_name):
    """
    根据表名获取ORM模型(这里假设你有一个映射到数据库表的模型)
    :param table_name: 表名
    :return: 对应的ORM模型
    """
    if table_name == "entities":
        from models import Entity  # 假设你已经定义了ORM模型
        return Entity
    elif table_name == "relations":
        from models import Relation  # 假设你已经定义了ORM模型
        return Relation
    else:
        raise ValueError(f"Unknown table: {table_name}")


# ======================== 模型加载 ========================
NER_MODEL_NAME = "uer/roberta-base-finetuned-cluener2020-chinese"

@lru_cache(maxsize=1)
def get_ner_pipeline():
    tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
    model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME)
    return pipeline(
        "ner",
        model=model,
        tokenizer=tokenizer,
        aggregation_strategy="first"
    )

@lru_cache(maxsize=1)
def get_re_pipeline():
    return pipeline(
        "text2text-generation",
        model=NER_MODEL_NAME,
        tokenizer=NER_MODEL_NAME,
        max_length=512,
        device=0 if torch.cuda.is_available() else -1
    )


# chatglm_model, chatglm_tokenizer = None, None
# use_chatglm = False
# try:
#     chatglm_model_name = "THUDM/chatglm-6b-int4"
#     chatglm_tokenizer = AutoTokenizer.from_pretrained(chatglm_model_name, trust_remote_code=True)
#     chatglm_model = AutoModel.from_pretrained(
#         chatglm_model_name,
#         trust_remote_code=True,
#         device_map="cpu",
#         torch_dtype=torch.float32
#     ).eval()
#     use_chatglm = True
#     print("✅ 4-bit量化版ChatGLM加载成功")
# except Exception as e:
#     print(f"❌ ChatGLM加载失败: {e}")

# ======================== 知识图谱结构 ========================
knowledge_graph = {"entities": set(), "relations": set()}


# 优化知识图谱更新函数,增加全局变量更新
def update_knowledge_graph(entities, relations):
    """
    更新知识图谱并保存到数据库
    """
    global knowledge_graph  # 明确声明使用全局变量
    # 保存实体
    for e in entities:
        if isinstance(e, dict) and 'text' in e and 'type' in e:
            save_to_db('entities', {
                'text': e['text'],
                'type': e['type'],
                'start_pos': e.get('start', -1),
                'end_pos': e.get('end', -1),
                'source': 'user_input'
            })
            knowledge_graph["entities"].add((e['text'], e['type']))

    # 保存关系
    for r in relations:
        if isinstance(r, dict) and all(k in r for k in ("head", "tail", "relation")):
            save_to_db('relations', {
                'head_entity': r['head'],
                'tail_entity': r['tail'],
                'relation_type': r['relation'],
                'source_text': ''  # 可添加原文关联
            })
            knowledge_graph["relations"].add((r['head'], r['tail'], r['relation']))


# 优化知识图谱文本格式生成函数,增加排序和去重
def visualize_kg_text():
    """
    生成知识图谱的文本格式
    """
    nodes = sorted(set([f"{ent[0]} ({ent[1]})" for ent in knowledge_graph["entities"]]))
    edges = sorted(set([f"{h} --[{r}]-> {t}" for h, t, r in knowledge_graph["relations"]]))
    return "\n".join(["📌 实体:"] + nodes + ["", "📎 关系:"] + edges)


# 优化知识图谱可视化函数,动态生成HTML文件名,避免覆盖
def visualize_kg_interactive(entities, relations):
    """
    生成交互式的知识图谱可视化
    """
    # 创建一个新的网络图
    net = Network(height="700px", width="100%", bgcolor="#ffffff", font_color="black")
    
    # 定义实体类型颜色
    entity_colors = {
        'PER': '#FF6B6B',  # 人物-红色
        'ORG': '#4ECDC4',  # 组织-青色
        'LOC': '#45B7D1',  # 地点-蓝色
        'TIME': '#96CEB4', # 时间-绿色
        'TITLE': '#D4A5A5' # 职位-灰色
    }
    
    # 添加实体节点
    for entity in entities:
        node_color = entity_colors.get(entity['type'], '#D3D3D3')  # 默认灰色
        net.add_node(entity['text'], 
                     label=f"{entity['text']} ({entity['type']})",
                     color=node_color,
                     title=f"类型: {entity['type']}")
    
    # 添加关系边
    for relation in relations:
        net.add_edge(relation['head'], 
                     relation['tail'], 
                     label=relation['relation'], 
                     arrows='to')
    
    # 设置物理布局
    net.set_options('''
    var options = {
        "physics": {
            "forceAtlas2Based": {
                "gravitationalConstant": -50,
                "centralGravity": 0.01,
                "springLength": 100,
                "springConstant": 0.08
            },
            "maxVelocity": 50,
            "solver": "forceAtlas2Based",
            "timestep": 0.35,
            "stabilization": {"iterations": 150}
        }
    }
    ''')
    
    # 动态生成HTML文件名
    timestamp = int(time.time())
    html_path = f"knowledge_graph_{timestamp}.html"
    net.save_graph(html_path)
    return html_path

# ======================== 实体识别(NER) ========================
def merge_adjacent_entities(entities):
    if not entities:
        return entities

    merged = [entities[0]]
    for entity in entities[1:]:
        last = merged[-1]
        # 合并相邻的同类型实体
        if (entity["type"] == last["type"] and
                entity["start"] == last["end"]):
            last["text"] += entity["text"]
            last["end"] = entity["end"]
        else:
            merged.append(entity)

    return merged


def ner(text, model_type="bert"):
    start_time = time.time()

    # 如果使用的是 ChatGLM 模型,执行 ChatGLM 的NER
    if model_type == "chatglm" and use_chatglm:
        try:
            prompt = f"""请从以下文本中识别所有实体,严格按照JSON列表格式返回,每个实体包含text、type、start、end字段:
示例:[{{"text": "北京", "type": "LOC", "start": 0, "end": 2}}]
文本:{text}"""
            response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.1)
            if isinstance(response, tuple):
                response = response[0]

            try:
                json_str = re.search(r'\[.*\]', response, re.DOTALL).group()
                entities = json.loads(json_str)
                valid_entities = [ent for ent in entities if all(k in ent for k in ("text", "type", "start", "end"))]
                return valid_entities, time.time() - start_time
            except Exception as e:
                print(f"JSON解析失败: {e}")
                return [], time.time() - start_time
        except Exception as e:
            print(f"ChatGLM调用失败: {e}")
            return [], time.time() - start_time

    # 使用BERT NER
    text_chunks = [text[i:i + 510] for i in range(0, len(text), 510)]  # 安全分段
    raw_results = []
    
    # 获取NER pipeline
    ner_pipeline = get_ner_pipeline()  # 使用缓存的pipeline
    
    for idx, chunk in enumerate(text_chunks):
        chunk_results = ner_pipeline(chunk)  # 使用获取的pipeline
        for r in chunk_results:
            r["start"] += idx * 510
            r["end"] += idx * 510
        raw_results.extend(chunk_results)

    entities = [{
        "text": r['word'].replace(' ', ''),
        "start": r['start'],
        "end": r['end'],
        "type": LABEL_MAPPING.get(r.get('entity_group') or r.get('entity'), r.get('entity_group') or r.get('entity'))
    } for r in raw_results]

    entities = merge_adjacent_entities(entities)
    return entities, time.time() - start_time


# ------------------ 实体类型标准化 ------------------
LABEL_MAPPING = {
    "address": "LOC",
    "company": "ORG",
    "name": "PER",
    "organization": "ORG",
    "position": "TITLE",
    "government": "ORG",
    "scene": "LOC",
    "book": "WORK",
    "movie": "WORK",
    "game": "WORK"
}

# 提取实体
entities, processing_time = ner("Google in New York met Alice")

# 标准化实体类型
for e in entities:
    e["type"] = LABEL_MAPPING.get(e.get("type"), e.get("type"))

# 打印标准化后的实体
print(f"[DEBUG] 标准化后实体列表: {[{'text': e['text'], 'type': e['type']} for e in entities]}")

# 打印处理时间
print(f"处理时间: {processing_time:.2f}秒")


# ======================== 关系抽取(RE) ========================
@lru_cache(maxsize=1)
def get_re_pipeline():
    tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
    model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME)
    return pipeline(
        "ner",  # 使用NER pipeline
        model=model,
        tokenizer=tokenizer,
        aggregation_strategy="first"
    )

def re_extract(entities, text, use_bert_model=True):
    if not entities or not text:
        return [], 0
    
    start_time = time.time()
    try:
        # 使用规则匹配关系
        relations = []
        
        # 定义关系关键词和对应的实体类型约束
        relation_rules = {
            "位于": {
                "keywords": ["位于", "在", "坐落于"],
                "valid_types": {
                    "head": ["ORG", "PER", "LOC"],
                    "tail": ["LOC"]
                }
            },
            "属于": {
                "keywords": ["属于", "是", "为"],
                "valid_types": {
                    "head": ["ORG", "PER"],
                    "tail": ["ORG", "LOC"]
                }
            },
            "任职于": {
                "keywords": ["任职于", "就职于", "工作于"],
                "valid_types": {
                    "head": ["PER"],
                    "tail": ["ORG"]
                }
            }
        }
        
        # 预处理实体,去除重复和部分匹配
        processed_entities = []
        for e in entities:
            # 检查是否与已有实体重叠
            is_subset = False
            for pe in processed_entities:
                if e["text"] in pe["text"] and e["text"] != pe["text"]:
                    is_subset = True
                    break
            if not is_subset:
                processed_entities.append(e)
        
        # 遍历文本中的每个句子
        sentences = re.split('[。!?.!?]', text)
        for sentence in sentences:
            if not sentence.strip():
                continue
            
            # 获取当前句子中的实体
            sentence_entities = [e for e in processed_entities if e["text"] in sentence]
            
            # 检查每个关系类型
            for rel_type, rule in relation_rules.items():
                for keyword in rule["keywords"]:
                    if keyword in sentence:
                        # 在句子中查找符合类型约束的实体对
                        for i, ent1 in enumerate(sentence_entities):
                            for j, ent2 in enumerate(sentence_entities):
                                if i != j:  # 避免自循环
                                    # 检查实体类型是否符合规则
                                    if (ent1["type"] in rule["valid_types"]["head"] and 
                                        ent2["type"] in rule["valid_types"]["tail"]):
                                        # 检查实体在句子中的位置关系
                                        if sentence.find(ent1["text"]) < sentence.find(ent2["text"]):
                                            relations.append({
                                                "head": ent1["text"],
                                                "tail": ent2["text"],
                                                "relation": rel_type
                                            })
        
        # 去重
        unique_relations = []
        seen = set()
        for rel in relations:
            rel_key = (rel["head"], rel["tail"], rel["relation"])
            if rel_key not in seen:
                seen.add(rel_key)
                unique_relations.append(rel)
        
        return unique_relations, time.time() - start_time
            
    except Exception as e:
        logging.error(f"关系抽取失败: {e}")
        return [], time.time() - start_time


# ======================== 文本分析主流程 ========================
def create_knowledge_graph(entities, relations):
    """
    创建知识图谱可视化(文本格式)
    """
    # 设置实体类型的颜色映射
    entity_colors = {
        'PER': '🔴',  # 人物-红色
        'ORG': '🔵',  # 组织-蓝色
        'LOC': '🟢',  # 地点-绿色
        'TIME': '🟡', # 时间-黄色
        'TITLE': '🟣' # 职位-紫色
    }
    
    # 生成实体列表
    entity_list = []
    for entity in entities:
        emoji = entity_colors.get(entity['type'], '⚪')
        entity_list.append(f"{emoji} {entity['text']} ({entity['type']})")
    
    # 生成关系列表
    relation_list = []
    for relation in relations:
        relation_list.append(f"{relation['head']} --[{relation['relation']}]--> {relation['tail']}")
    
    # 生成HTML内容
    html_content = f"""
    <div style="font-family: Arial, sans-serif; padding: 20px;">
        <h3 style="color: #333; margin-bottom: 15px;">📌 实体列表:</h3>
        <div style="margin-bottom: 20px;">
            {chr(10).join(f'<div style="margin: 5px 0;">{entity}</div>' for entity in entity_list)}
        </div>
        
        <h3 style="color: #333; margin-bottom: 15px;">📎 关系列表:</h3>
        <div>
            {chr(10).join(f'<div style="margin: 5px 0;">{relation}</div>' for relation in relation_list)}
        </div>
        
        <div style="margin-top: 20px; padding: 10px; background-color: #f8f9fa; border-radius: 5px;">
            <h4 style="color: #666; margin-bottom: 10px;">图例说明:</h4>
            <div style="display: flex; gap: 15px; flex-wrap: wrap;">
                {chr(10).join(f'<div style="display: flex; align-items: center; gap: 5px;"><span>{emoji}</span><span>{label}</span></div>' for label, emoji in entity_colors.items())}
            </div>
        </div>
    </div>
    """
    
    return html_content

def process_text(text, model_type="bert"):
    """
    处理文本,进行实体识别和关系抽取
    """
    start_time = time.time()
    
    # 实体识别
    entities, ner_duration = ner(text, model_type)
    if not entities:
        return "", "", "", f"{time.time() - start_time:.2f} 秒"
    
    # 关系抽取
    relations, re_duration = re_extract(entities, text)
    
    # 生成文本格式的实体和关系描述
    ent_text = "📌 实体:\n" + "\n".join([f"{e['text']} ({e['type']})" for e in entities])
    rel_text = "\n\n📎 关系:\n" + "\n".join([f"{r['head']} --[{r['relation']}]--> {r['tail']}" for r in relations])
    
    # 生成知识图谱
    kg_text = create_knowledge_graph(entities, relations)
    
    total_duration = time.time() - start_time
    return ent_text, rel_text, kg_text, f"{total_duration:.2f} 秒"

# ======================== 知识图谱可视化 ========================
def generate_kg_image(entities, relations):
    """
    生成知识图谱的图片并保存到临时文件(Hugging Face适配版)
    """
    try:
        import tempfile
        import matplotlib.pyplot as plt
        import networkx as nx
        import os

        # === 1. 强制设置中文字体 ===
        plt.rcParams['font.sans-serif'] = ['Noto Sans CJK SC']  # Hugging Face内置字体
        plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

        # === 2. 检查输入数据 ===
        if not entities or not relations:
            return None

        # === 3. 创建图谱 ===
        G = nx.DiGraph()
        entity_colors = {
            'PER': '#FF6B6B',  # 红色
            'ORG': '#4ECDC4',  # 青色
            'LOC': '#45B7D1',  # 蓝色
            'TIME': '#96CEB4', # 绿色
            'TITLE': '#D4A5A5' # 灰色
        }

        # 添加节点(实体)
        for entity in entities:
            G.add_node(
                entity["text"],
                label=f"{entity['text']} ({entity['type']})",
                color=entity_colors.get(entity['type'], '#D3D3D3')
            )

        # 添加边(关系)
        for relation in relations:
            if relation["head"] in G.nodes and relation["tail"] in G.nodes:
                G.add_edge(
                    relation["head"],
                    relation["tail"],
                    label=relation["relation"]
                )

        # === 4. 绘图配置 ===
        plt.figure(figsize=(12, 8), dpi=150)  # 降低DPI以节省内存
        pos = nx.spring_layout(G, k=0.7, seed=42)  # 固定随机种子保证布局稳定

        # 绘制节点和边
        nx.draw_networkx_nodes(
            G, pos,
            node_color=[G.nodes[n]['color'] for n in G.nodes],
            node_size=800
        )
        nx.draw_networkx_edges(
            G, pos,
            edge_color='#888888',
            width=1.5,
            arrows=True,
            arrowsize=20
        )

        # === 5. 绘制中文标签(关键修改点)===
        nx.draw_networkx_labels(
            G, pos,
            labels={n: G.nodes[n]['label'] for n in G.nodes},
            font_size=10,
            font_family='Noto Sans CJK SC'  # 显式指定字体
        )
        nx.draw_networkx_edge_labels(
            G, pos,
            edge_labels=nx.get_edge_attributes(G, 'label'),
            font_size=8,
            font_family='Noto Sans CJK SC'  # 显式指定字体
        )

        plt.axis('off')
        
        # === 6. 保存到临时文件 ===
        temp_dir = tempfile.mkdtemp()
        file_path = os.path.join(temp_dir, "kg.png")
        plt.savefig(file_path, bbox_inches='tight')
        plt.close()
        
        return file_path
        
    except Exception as e:
        logging.error(f"生成知识图谱图片失败: {str(e)}")
        return None


def process_file(file, model_type="bert"):
    try:
        with open(file.name, 'rb') as f:
            content = f.read()

        if len(content) > 5 * 1024 * 1024:
            return "❌ 文件太大", "", "", "", None

        # 检测编码
        try:
            encoding = chardet.detect(content)['encoding'] or 'utf-8'
            text = content.decode(encoding)
        except UnicodeDecodeError:
            # 尝试常见中文编码
            for enc in ['gb18030', 'utf-16', 'big5']:
                try:
                    text = content.decode(enc)
                    break
                except:
                    continue
            else:
                return "❌ 编码解析失败", "", "", "", None

        # 调用现有流程处理文本
        ent_text, rel_text, kg_text, duration = process_text(text, model_type)
        
        # 生成知识图谱图片
        entities, _ = ner(text, model_type)
        relations, _ = re_extract(entities, text)
        kg_image_path = generate_kg_image(entities, relations)  # 返回文件路径
        
        return ent_text, rel_text, kg_text, duration, kg_image_path
        
    except Exception as e:
        logging.error(f"文件处理错误: {str(e)}")
        return f"❌ 文件处理错误: {str(e)}", "", "", "", None


# ======================== 模型评估与自动标注 ========================
def convert_telegram_json_to_eval_format(path):
    with open(path, encoding="utf-8") as f:
        data = json.load(f)
    if isinstance(data, dict) and "text" in data:
        return [{"text": data["text"], "entities": [
            {"text": data["text"][e["start"]:e["end"]]} for e in data.get("entities", [])
        ]}]
    elif isinstance(data, list):
        return data
    elif isinstance(data, dict) and "messages" in data:
        result = []
        for m in data.get("messages", []):
            if isinstance(m.get("text"), str):
                result.append({"text": m["text"], "entities": []})
            elif isinstance(m.get("text"), list):
                txt = ''.join([x["text"] if isinstance(x, dict) else x for x in m["text"]])
                result.append({"text": txt, "entities": []})
        return result
    return []


def evaluate_ner_model(data, model_type):
    tp, fp, fn = 0, 0, 0
    POS_TOLERANCE = 1

    for item in data:
        text = item["text"]
        # 处理标注数据
        gold_entities = validate_gold_entities([
            {
                "text": e["text"],
                "type": LABEL_MAPPING.get(e["type"], e["type"]),
                "start": e.get("start", -1),
                "end": e.get("end", -1)
            }
            for e in item.get("entities", [])
        ])

        # 获取预测结果
        pred_entities, _ = ner(text, model_type)

        # 初始化匹配状态
        matched_gold = [False] * len(gold_entities)
        matched_pred = [False] * len(pred_entities)

        # 遍历预测实体寻找匹配
        for p_idx, p in enumerate(pred_entities):
            for g_idx, g in enumerate(gold_entities):
                if not matched_gold[g_idx] and \
                        p["text"] == g["text"] and \
                        p["type"] == g["type"] and \
                        abs(p["start"] - g["start"]) <= POS_TOLERANCE and \
                        abs(p["end"] - g["end"]) <= POS_TOLERANCE:
                    matched_gold[g_idx] = True
                    matched_pred[p_idx] = True
                    break

        # 统计指标
        tp += sum(matched_pred)
        fp += len(pred_entities) - sum(matched_pred)
        fn += len(gold_entities) - sum(matched_gold)

    # 处理除零情况
    precision = tp / (tp + fp) if (tp + fp) > 0 else 0
    recall = tp / (tp + fn) if (tp + fn) > 0 else 0
    f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0

    return (f"Precision: {precision:.2f}\n"
            f"Recall: {recall:.2f}\n"
            f"F1: {f1:.2f}")


def auto_annotate(file, model_type):
    data = convert_telegram_json_to_eval_format(file.name)
    for item in data:
        ents, _ = ner(item["text"], model_type)
        item["entities"] = ents
    return json.dumps(data, ensure_ascii=False, indent=2)


def save_json(json_text):
    fname = f"auto_labeled_{int(time.time())}.json"
    with open(fname, "w", encoding="utf-8") as f:
        f.write(json_text)
    return fname


# ======================== 数据集导入 ========================
def import_dataset(path="D:/云边智算/暗语识别/filtered_results"):
    import os
    import json

    for filename in os.listdir(path):
        if filename.endswith('.json'):
            filepath = os.path.join(path, filename)
            with open(filepath, 'r', encoding='utf-8') as f:
                data = json.load(f)
                # 调用现有处理流程
                process_text(data['text'])
                print(f"已处理文件: {filename}")


# ======================== Gradio 界面 ========================
with gr.Blocks(css="""
    .kg-graph {height: 700px; overflow-y: auto;}
    .warning {color: #ff6b6b;}
    .error {color: #ff0000; padding: 10px; background-color: #ffeeee; border-radius: 5px;}
""") as demo:
    gr.Markdown("# 🤖 聊天记录实体关系识别系统")

    with gr.Tab("📄 文本分析"):
        input_text = gr.Textbox(lines=6, label="输入文本")
        model_type = gr.Radio(["bert", "chatglm"], value="bert", label="选择模型")
        btn = gr.Button("开始分析")
        out1 = gr.Textbox(label="识别实体")
        out2 = gr.Textbox(label="识别关系")
        out3 = gr.HTML(label="知识图谱")  # 使用HTML组件显示文本格式的知识图谱
        out4 = gr.Textbox(label="耗时")
        btn.click(fn=process_text, inputs=[input_text, model_type], outputs=[out1, out2, out3, out4])

    with gr.Tab("🗂 文件分析"):
        file_input = gr.File(file_types=[".txt", ".json"])
        file_btn = gr.Button("上传并分析")
        fout1, fout2, fout3, fout4, fout5 = gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.File(label="下载知识图谱图片")
        file_btn.click(fn=process_file, inputs=[file_input, model_type], outputs=[fout1, fout2, fout3, fout4, fout5])

    with gr.Tab("📊 模型评估"):
        eval_file = gr.File(label="上传标注 JSON")
        eval_model = gr.Radio(["bert", "chatglm"], value="bert")
        eval_btn = gr.Button("开始评估")
        eval_output = gr.Textbox(label="评估结果", lines=5)
        eval_btn.click(lambda f, m: evaluate_ner_model(convert_telegram_json_to_eval_format(f.name), m),
                       [eval_file, eval_model], eval_output)

    with gr.Tab("✏️ 自动标注"):
        raw_file = gr.File(label="上传 Telegram 原始 JSON")
        auto_model = gr.Radio(["bert", "chatglm"], value="bert")
        auto_btn = gr.Button("自动标注")
        marked_texts = gr.Textbox(label="标注结果", lines=20)
        download_btn = gr.Button("💾 下载标注文件")
        auto_btn.click(fn=auto_annotate, inputs=[raw_file, auto_model], outputs=marked_texts)
        download_btn.click(fn=save_json, inputs=marked_texts, outputs=gr.File())

    with gr.Tab("📂 数据管理"):
        gr.Markdown("### 数据集导入")
        dataset_path = gr.Textbox(
            value="D:/云边智算/暗语识别/filtered_results",
            label="数据集路径"
        )
        import_btn = gr.Button("导入数据集到数据库")
        import_output = gr.Textbox(label="导入日志")
        import_btn.click(fn=lambda: import_dataset(dataset_path.value), outputs=import_output)

demo.launch(server_name="0.0.0.0", server_port=7860)