Spaces:
Sleeping
Sleeping
File size: 23,184 Bytes
24834ac 34d39a3 24834ac 34d39a3 21de670 2543020 34d39a3 21de670 34d39a3 221602b 21de670 34d39a3 21de670 34d39a3 21de670 34d39a3 21de670 24834ac 2543020 24834ac 34d39a3 21de670 2543020 34d39a3 21de670 34d39a3 021ecb3 21de670 34d39a3 2543020 21de670 021ecb3 34d39a3 21de670 021ecb3 21de670 34d39a3 21de670 24834ac 34d39a3 24834ac 34d39a3 3822c77 21de670 34d39a3 21de670 34d39a3 21de670 3822c77 21de670 34d39a3 21de670 34d39a3 21de670 34d39a3 21de670 f956d7d 34d39a3 24834ac b9c6a4b 24834ac 34d39a3 24834ac 2543020 34d39a3 2543020 24834ac 34d39a3 2543020 24834ac 34d39a3 24834ac 34d39a3 24834ac 34d39a3 24834ac 2543020 24834ac 34d39a3 24834ac 34d39a3 24834ac 34d39a3 24834ac 34d39a3 b910ef3 34d39a3 b910ef3 34d39a3 24834ac 34d39a3 24834ac 34d39a3 ec2589e 34d39a3 24834ac 34d39a3 24834ac 34d39a3 24834ac 34d39a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel
import gradio as gr
import re
import os
import json
import chardet
from sklearn.metrics import precision_score, recall_score, f1_score
import time
# ======================== 数据库模块 ========================
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from contextlib import contextmanager
import logging
# 配置日志
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# 使用SQLAlchemy的连接池来管理数据库连接
DATABASE_URL = "mysql+pymysql://user:password@host/dbname" # 请根据实际情况修改连接字符串
# 创建引擎(连接池)
engine = create_engine(DATABASE_URL, pool_size=10, max_overflow=20, echo=True)
# 创建session类
Session = sessionmaker(bind=engine)
@contextmanager
def get_db_connection():
"""
使用上下文管理器获取数据库连接
"""
session = None
try:
session = Session() # 从连接池中获取一个连接
logging.info("✅ 数据库连接已建立")
yield session # 使用session进行数据库操作
except Exception as e:
logging.error(f"❌ 数据库操作时发生错误: {e}")
if session:
session.rollback() # 回滚事务
finally:
if session:
try:
session.commit() # 提交事务
logging.info("✅ 数据库事务已提交")
except Exception as e:
logging.error(f"❌ 提交事务时发生错误: {e}")
finally:
session.close() # 关闭会话,释放连接
logging.info("✅ 数据库连接已关闭")
def save_to_db(table, data):
"""
将数据保存到数据库
:param table: 表名
:param data: 数据字典
"""
try:
valid_tables = ["entities", "relations"] # 只允许保存到这些表
if table not in valid_tables:
raise ValueError(f"Invalid table: {table}")
with get_db_connection() as conn:
if conn:
# 这里的操作假设使用了ORM模型来处理插入,实际根据你数据库的表结构来调整
table_model = get_table_model(table) # 假设你有一个方法来根据表名获得ORM模型
new_record = table_model(**data)
conn.add(new_record)
conn.commit() # 提交事务
except Exception as e:
logging.error(f"❌ 保存数据时发生错误: {e}")
return False
return True
def get_table_model(table_name):
"""
根据表名获取ORM模型(这里假设你有一个映射到数据库表的模型)
:param table_name: 表名
:return: 对应的ORM模型
"""
if table_name == "entities":
from models import Entity # 假设你已经定义了ORM模型
return Entity
elif table_name == "relations":
from models import Relation # 假设你已经定义了ORM模型
return Relation
else:
raise ValueError(f"Unknown table: {table_name}")
# ======================== 模型加载 ========================
NER_MODEL_NAME = "uer/roberta-base-finetuned-cluener2020-chinese"
bert_tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
bert_ner_model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME)
bert_ner_pipeline = pipeline(
"ner",
model=bert_ner_model,
tokenizer=bert_tokenizer,
aggregation_strategy="first"
)
use_chatglm = False
# chatglm_model, chatglm_tokenizer = None, None
# use_chatglm = False
# try:
# chatglm_model_name = "THUDM/chatglm-6b-int4"
# chatglm_tokenizer = AutoTokenizer.from_pretrained(chatglm_model_name, trust_remote_code=True)
# chatglm_model = AutoModel.from_pretrained(
# chatglm_model_name,
# trust_remote_code=True,
# device_map="cpu",
# torch_dtype=torch.float32
# ).eval()
# use_chatglm = True
# print("✅ 4-bit量化版ChatGLM加载成功")
# except Exception as e:
# print(f"❌ ChatGLM加载失败: {e}")
# ======================== 知识图谱结构 ========================
knowledge_graph = {"entities": set(), "relations": set()}
def update_knowledge_graph(entities, relations):
# 保存实体
for e in entities:
if isinstance(e, dict) and 'text' in e and 'type' in e:
save_to_db('entities', {
'text': e['text'],
'type': e['type'],
'start_pos': e.get('start', -1),
'end_pos': e.get('end', -1),
'source': 'user_input'
})
# 保存关系
for r in relations:
if isinstance(r, dict) and all(k in r for k in ("head", "tail", "relation")):
save_to_db('relations', {
'head_entity': r['head'],
'tail_entity': r['tail'],
'relation_type': r['relation'],
'source_text': '' # 可添加原文关联
})
def visualize_kg_text():
nodes = [f"{ent[0]} ({ent[1]})" for ent in knowledge_graph["entities"]]
edges = [f"{h} --[{r}]-> {t}" for h, t, r in knowledge_graph["relations"]]
return "\n".join(["📌 实体:"] + nodes + ["", "📎 关系:"] + edges)
# ======================== 实体识别(NER) ========================
def merge_adjacent_entities(entities):
if not entities:
return entities
merged = [entities[0]]
for entity in entities[1:]:
last = merged[-1]
# 合并相邻的同类型实体
if (entity["type"] == last["type"] and
entity["start"] == last["end"]):
last["text"] += entity["text"]
last["end"] = entity["end"]
else:
merged.append(entity)
return merged
def ner(text, model_type="bert"):
start_time = time.time()
# 如果使用的是 ChatGLM 模型,执行 ChatGLM 的NER
if model_type == "chatglm" and use_chatglm:
try:
prompt = f"""请从以下文本中识别所有实体,严格按照JSON列表格式返回,每个实体包含text、type、start、end字段:
示例:[{{"text": "北京", "type": "LOC", "start": 0, "end": 2}}]
文本:{text}"""
response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.1)
if isinstance(response, tuple):
response = response[0]
try:
json_str = re.search(r'\[.*\]', response, re.DOTALL).group()
entities = json.loads(json_str)
valid_entities = [ent for ent in entities if all(k in ent for k in ("text", "type", "start", "end"))]
return valid_entities, time.time() - start_time
except Exception as e:
print(f"JSON解析失败: {e}")
return [], time.time() - start_time
except Exception as e:
print(f"ChatGLM调用失败: {e}")
return [], time.time() - start_time
# 使用BERT NER
text_chunks = [text[i:i + 510] for i in range(0, len(text), 510)] # 安全分段
raw_results = []
for idx, chunk in enumerate(text_chunks):
chunk_results = bert_ner_pipeline(chunk)
for r in chunk_results:
r["start"] += idx * 510
r["end"] += idx * 510
raw_results.extend(chunk_results)
entities = [{
"text": r['word'].replace(' ', ''),
"start": r['start'],
"end": r['end'],
"type": LABEL_MAPPING.get(r.get('entity_group') or r.get('entity'), r.get('entity_group') or r.get('entity'))
} for r in raw_results]
entities = merge_adjacent_entities(entities)
return entities, time.time() - start_time
# ------------------ 实体类型标准化 ------------------
LABEL_MAPPING = {
"address": "LOC",
"company": "ORG",
"name": "PER",
"organization": "ORG",
"position": "TITLE",
"government": "ORG",
"scene": "LOC",
"book": "WORK",
"movie": "WORK",
"game": "WORK"
}
# 提取实体
entities, processing_time = ner("Google in New York met Alice")
# 标准化实体类型
for e in entities:
e["type"] = LABEL_MAPPING.get(e.get("type"), e.get("type"))
# 打印标准化后的实体
print(f"[DEBUG] 标准化后实体列表: {[{'text': e['text'], 'type': e['type']} for e in entities]}")
# 打印处理时间
print(f"处理时间: {processing_time:.2f}秒")
# ======================== 关系抽取(RE) ========================
import re
import json
def re_extract(entities, text, use_bert_model=True, bert_model=None):
# ------------------ 参数校验 ------------------
if not entities or not text:
print("[DEBUG] 参数校验失败,实体或文本为空")
return []
valid_entity_types = {"PER", "LOC", "ORG", "TITLE"}
filtered_entities = [e for e in entities if e.get("type") in valid_entity_types]
if not filtered_entities:
print("[DEBUG] 未找到有效的实体")
return []
# ------------------ 单实体场景 ------------------
if len(filtered_entities) == 1:
single_relations = []
ent = filtered_entities[0]
print(f"[DEBUG] 处理单实体:{ent['text']},类型:{ent['type']}")
if ent["type"] == "PER":
position_keywords = ["CEO", "经理", "总监", "工程师", "教授", "首席"]
# 基于关键词判断
for keyword in position_keywords:
if keyword in text:
print(f"[DEBUG] 发现职位关键词:{keyword}")
single_relations.append({
"head": ent["text"],
"tail": keyword,
"relation": "担任职位"
})
break
# 基于句式:“张三是首席科学家”
match = re.search(rf"{ent['text']}是(.{{1,10}}?)(?:,|。|的)?", text)
if match:
title = match.group(1)
if any(t in title for t in position_keywords):
print(f"[DEBUG] 句式识别职位:{title}")
single_relations.append({
"head": ent["text"],
"tail": title,
"relation": "担任职位"
})
elif ent["type"] in ["ORG", "LOC"]:
location_verbs = ["位于", "坐落于", "地处"]
for verb in location_verbs:
match = re.search(fr"{ent['text']}{verb}(.+?)[,。]", text)
if match:
print(f"[DEBUG] 发现位置关系:{ent['text']} {verb} {match.group(1)}")
single_relations.append({
"head": ent["text"],
"tail": match.group(1).strip(),
"relation": "位置"
})
break
return single_relations
# ------------------ 多实体关系抽取 ------------------
relations = []
if use_bert_model and len(filtered_entities) >= 2:
try:
entity_list = [e["text"] for e in filtered_entities]
prompt = f"""请分析以下文本中的实体关系,严格按照JSON列表格式返回:
文本内容:{text}
候选实体:{entity_list}
要求:
1. 只返回存在明确关系的实体对
2. 关系类型使用:属于、位于、任职于、合作、其他
3. 示例格式:[{{"head":"实体1", "tail":"实体2", "relation":"关系类型"}}]
请直接返回JSON,不要多余内容:"""
response = bert_model.predict(prompt) # 模型接口自定义
json_str = re.search(r'(\[.*?\])', response, re.DOTALL)
if json_str:
json_str = json_str.group(1)
json_str = re.sub(r'[\u201c\u201d]', '"', json_str)
json_str = re.sub(r'(?<!,)\n', '', json_str)
parsed = json.loads(json_str)
valid_types = {"属于", "位于", "任职于", "合作", "其他"}
entity_texts = set(e["text"] for e in filtered_entities)
for rel in parsed:
if (
isinstance(rel, dict)
and rel.get("head") in entity_texts
and rel.get("tail") in entity_texts
and rel.get("relation") in valid_types
):
print(f"[DEBUG] 模型抽取关系:{rel}")
relations.append(rel)
else:
print("[DEBUG] 未能解析出关系JSON")
except Exception as e:
print(f"[DEBUG] BERT模型关系抽取异常: {str(e)}")
# ------------------ 规则兜底 ------------------
if len(relations) == 0:
print("[DEBUG] 启用规则兜底抽取关系")
# A位于B
for match in re.finditer(r'([^\s,。]+?)(?:位于|坐落于|地处)([^\s,。]+)', text):
head, tail = match.groups()
print(f"[DEBUG] 发现位于关系:{head} 位于 {tail}")
relations.append({"head": head, "tail": tail, "relation": "位于"})
# A属于B
for match in re.finditer(r'([^\s,。]+?)(?:属于|隶属于)([^\s,。]+)', text):
head, tail = match.groups()
print(f"[DEBUG] 发现属于关系:{head} 属于 {tail}")
relations.append({"head": head, "tail": tail, "relation": "属于"})
# 人物-机构(张三 就职于 腾讯公司)
person_org_pattern = r'([\u4e00-\u9fa5]{2,4})(?:现任|担任|就职于)([\u4e00-\u9fa5]+?公司|[\u4e00-\u9fa5]+?大学)'
for match in re.finditer(person_org_pattern, text):
head, tail = match.groups()
print(f"[DEBUG] 发现任职关系:{head} 任职于 {tail}")
relations.append({"head": head, "tail": tail, "relation": "任职于"})
# ------------------ 去重与验证 ------------------
seen = set()
final_relations = []
entity_text_set = set(e["text"] for e in filtered_entities)
for rel in relations:
key = (rel["head"], rel["tail"], rel["relation"])
if key not in seen and rel["head"] in entity_text_set and rel["tail"] in entity_text_set:
final_relations.append(rel)
seen.add(key)
print(f"[DEBUG] 添加有效关系:{rel}")
else:
print(f"[DEBUG] 忽略无效关系:{rel}")
return final_relations
# ======================== 文本分析主流程 ========================
def process_text(text, model_type="bert"):
entities, duration = ner(text, model_type)
relations = re_extract(entities, text)
update_knowledge_graph(entities, relations)
DISPLAY_LABELS = {
"PER": "人名",
"LOC": "地点",
"ORG": "机构",
"TIME": "时间",
"TITLE": "职位",
"PRODUCT": "产品"
}
ent_text = "\n".join(
f"{e['text']} ({DISPLAY_LABELS.get(e['type'], e['type'])}) [{e['start']}-{e['end']}]"
for e in entities
)
rel_text = "\n".join(f"{r['head']} --[{r['relation']}]-> {r['tail']}" for r in relations)
kg_text = visualize_kg_text()
return ent_text, rel_text, kg_text, f"{duration:.2f} 秒"
def process_file(file, model_type="bert"):
try:
with open(file.name, 'rb') as f:
content = f.read()
if len(content) > 5 * 1024 * 1024:
return "❌ 文件太大", "", "", ""
# 检测编码
try:
encoding = chardet.detect(content)['encoding'] or 'utf-8'
text = content.decode(encoding)
except UnicodeDecodeError:
# 尝试常见中文编码
for enc in ['gb18030', 'utf-16', 'big5'] :
try:
text = content.decode(enc)
break
except:
continue
else:
return "❌ 编码解析失败", "", "", ""
return process_text(text, model_type)
except Exception as e:
return f"❌ 文件处理错误: {str(e)}", "", "", ""
# ======================== 模型评估与自动标注 ========================
def convert_telegram_json_to_eval_format(path):
with open(path, encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, dict) and "text" in data:
return [{"text": data["text"], "entities": [
{"text": data["text"][e["start"]:e["end"]]} for e in data.get("entities", [])
]}]
elif isinstance(data, list):
return data
elif isinstance(data, dict) and "messages" in data:
result = []
for m in data.get("messages", []):
if isinstance(m.get("text"), str):
result.append({"text": m["text"], "entities": []})
elif isinstance(m.get("text"), list):
txt = ''.join([x["text"] if isinstance(x, dict) else x for x in m["text"]])
result.append({"text": txt, "entities": []})
return result
return []
def evaluate_ner_model(data, model_type):
tp, fp, fn = 0, 0, 0
POS_TOLERANCE = 1
for item in data:
text = item["text"]
# 处理标注数据
gold_entities = []
for e in item.get("entities", []):
if "text" in e and "type" in e:
norm_type = LABEL_MAPPING.get(e["type"], e["type"])
gold_entities.append({
"text": e["text"],
"type": norm_type,
"start": e.get("start", -1),
"end": e.get("end", -1)
})
# 获取预测结果
pred_entities, _ = ner(text, model_type)
# 初始化匹配状态
matched_gold = [False] * len(gold_entities)
matched_pred = [False] * len(pred_entities)
# 遍历预测实体寻找匹配
for p_idx, p in enumerate(pred_entities):
for g_idx, g in enumerate(gold_entities):
if not matched_gold[g_idx] and \
p["text"] == g["text"] and \
p["type"] == g["type"] and \
abs(p["start"] - g["start"]) <= POS_TOLERANCE and \
abs(p["end"] - g["end"]) <= POS_TOLERANCE:
matched_gold[g_idx] = True
matched_pred[p_idx] = True
break
# 统计指标
tp += sum(matched_pred)
fp += len(pred_entities) - sum(matched_pred)
fn += len(gold_entities) - sum(matched_gold)
# 处理除零情况
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
return (f"Precision: {precision:.2f}\n"
f"Recall: {recall:.2f}\n"
f"F1: {f1:.2f}")
def auto_annotate(file, model_type):
data = convert_telegram_json_to_eval_format(file.name)
for item in data:
ents, _ = ner(item["text"], model_type)
item["entities"] = ents
return json.dumps(data, ensure_ascii=False, indent=2)
def save_json(json_text):
fname = f"auto_labeled_{int(time.time())}.json"
with open(fname, "w", encoding="utf-8") as f:
f.write(json_text)
return fname
# ======================== 数据集导入 ========================
def import_dataset(path="D:/云边智算/暗语识别/filtered_results"):
import os
import json
for filename in os.listdir(path):
if filename.endswith('.json'):
filepath = os.path.join(path, filename)
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
# 调用现有处理流程
process_text(data['text'])
print(f"已处理文件: {filename}")
# ======================== Gradio 界面 ========================
with gr.Blocks(css="""
.kg-graph {height: 500px; overflow-y: auto;}
.warning {color: #ff6b6b;}
""") as demo:
gr.Markdown("# 🤖 聊天记录实体关系识别系统")
with gr.Tab("📄 文本分析"):
input_text = gr.Textbox(lines=6, label="输入文本")
model_type = gr.Radio(["bert", "chatglm"], value="bert", label="选择模型")
btn = gr.Button("开始分析")
out1 = gr.Textbox(label="识别实体")
out2 = gr.Textbox(label="识别关系")
out3 = gr.Textbox(label="知识图谱")
out4 = gr.Textbox(label="耗时")
btn.click(fn=process_text, inputs=[input_text, model_type], outputs=[out1, out2, out3, out4])
with gr.Tab("🗂 文件分析"):
file_input = gr.File(file_types=[".txt", ".json"])
file_btn = gr.Button("上传并分析")
fout1, fout2, fout3, fout4 = gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.Textbox()
file_btn.click(fn=process_file, inputs=[file_input, model_type], outputs=[fout1, fout2, fout3, fout4])
with gr.Tab("📊 模型评估"):
eval_file = gr.File(label="上传标注 JSON")
eval_model = gr.Radio(["bert", "chatglm"], value="bert")
eval_btn = gr.Button("开始评估")
eval_output = gr.Textbox(label="评估结果", lines=5)
eval_btn.click(lambda f, m: evaluate_ner_model(convert_telegram_json_to_eval_format(f.name), m),
[eval_file, eval_model], eval_output)
with gr.Tab("✏️ 自动标注"):
raw_file = gr.File(label="上传 Telegram 原始 JSON")
auto_model = gr.Radio(["bert", "chatglm"], value="bert")
auto_btn = gr.Button("自动标注")
marked_texts = gr.Textbox(label="标注结果", lines=20)
download_btn = gr.Button("💾 下载标注文件")
auto_btn.click(fn=auto_annotate, inputs=[raw_file, auto_model], outputs=marked_texts)
download_btn.click(fn=save_json, inputs=marked_texts, outputs=gr.File())
with gr.Tab("📂 数据管理"):
gr.Markdown("### 数据集导入")
dataset_path = gr.Textbox(
value="D:/云边智算/暗语识别/filtered_results",
label="数据集路径"
)
import_btn = gr.Button("导入数据集到数据库")
import_output = gr.Textbox(label="导入日志")
import_btn.click(fn=lambda: import_dataset(dataset_path.value), outputs=import_output)
demo.launch(server_name="0.0.0.0", server_port=7860) |