File size: 23,184 Bytes
24834ac
 
 
 
 
 
 
34d39a3
24834ac
34d39a3
21de670
 
2543020
34d39a3
21de670
34d39a3
221602b
21de670
34d39a3
21de670
34d39a3
 
21de670
34d39a3
 
21de670
24834ac
2543020
24834ac
34d39a3
 
 
21de670
2543020
34d39a3
21de670
34d39a3
021ecb3
21de670
 
34d39a3
2543020
21de670
021ecb3
34d39a3
21de670
021ecb3
21de670
 
34d39a3
21de670
24834ac
 
34d39a3
 
 
 
 
24834ac
34d39a3
3822c77
 
21de670
 
 
34d39a3
 
21de670
 
34d39a3
21de670
 
 
 
3822c77
21de670
34d39a3
 
 
 
 
21de670
34d39a3
21de670
 
34d39a3
21de670
 
 
f956d7d
34d39a3
24834ac
b9c6a4b
24834ac
 
34d39a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24834ac
 
 
2543020
 
34d39a3
2543020
 
24834ac
34d39a3
 
 
2543020
 
24834ac
 
34d39a3
24834ac
 
34d39a3
24834ac
 
34d39a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24834ac
 
 
 
2543020
 
24834ac
34d39a3
 
 
 
 
 
 
 
24834ac
 
 
34d39a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24834ac
34d39a3
 
 
 
 
 
 
 
 
24834ac
 
34d39a3
b910ef3
34d39a3
b910ef3
 
34d39a3
24834ac
34d39a3
 
 
 
 
 
 
24834ac
 
34d39a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec2589e
34d39a3
 
 
 
 
 
 
24834ac
 
34d39a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24834ac
 
 
34d39a3
 
 
 
24834ac
34d39a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel
import gradio as gr
import re
import os
import json
import chardet
from sklearn.metrics import precision_score, recall_score, f1_score
import time
# ======================== 数据库模块 ========================
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from contextlib import contextmanager
import logging

# 配置日志
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# 使用SQLAlchemy的连接池来管理数据库连接
DATABASE_URL = "mysql+pymysql://user:password@host/dbname"  # 请根据实际情况修改连接字符串

# 创建引擎(连接池)
engine = create_engine(DATABASE_URL, pool_size=10, max_overflow=20, echo=True)

# 创建session类
Session = sessionmaker(bind=engine)

@contextmanager
def get_db_connection():
    """

    使用上下文管理器获取数据库连接

    """
    session = None
    try:
        session = Session()  # 从连接池中获取一个连接
        logging.info("✅ 数据库连接已建立")
        yield session  # 使用session进行数据库操作
    except Exception as e:
        logging.error(f"❌ 数据库操作时发生错误: {e}")
        if session:
            session.rollback()  # 回滚事务
    finally:
        if session:
            try:
                session.commit()  # 提交事务
                logging.info("✅ 数据库事务已提交")
            except Exception as e:
                logging.error(f"❌ 提交事务时发生错误: {e}")
            finally:
                session.close()  # 关闭会话,释放连接
                logging.info("✅ 数据库连接已关闭")

def save_to_db(table, data):
    """

    将数据保存到数据库

    :param table: 表名

    :param data: 数据字典

    """
    try:
        valid_tables = ["entities", "relations"]  # 只允许保存到这些表
        if table not in valid_tables:
            raise ValueError(f"Invalid table: {table}")
        
        with get_db_connection() as conn:
            if conn:
                # 这里的操作假设使用了ORM模型来处理插入,实际根据你数据库的表结构来调整
                table_model = get_table_model(table)  # 假设你有一个方法来根据表名获得ORM模型
                new_record = table_model(**data)
                conn.add(new_record)
                conn.commit()  # 提交事务
    except Exception as e:
        logging.error(f"❌ 保存数据时发生错误: {e}")
        return False
    return True

def get_table_model(table_name):
    """

    根据表名获取ORM模型(这里假设你有一个映射到数据库表的模型)

    :param table_name: 表名

    :return: 对应的ORM模型

    """
    if table_name == "entities":
        from models import Entity  # 假设你已经定义了ORM模型
        return Entity
    elif table_name == "relations":
        from models import Relation  # 假设你已经定义了ORM模型
        return Relation
    else:
        raise ValueError(f"Unknown table: {table_name}")


# ======================== 模型加载 ========================
NER_MODEL_NAME = "uer/roberta-base-finetuned-cluener2020-chinese"
bert_tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
bert_ner_model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME)
bert_ner_pipeline = pipeline(
    "ner",
    model=bert_ner_model,
    tokenizer=bert_tokenizer,
    aggregation_strategy="first"
)

use_chatglm = False


# chatglm_model, chatglm_tokenizer = None, None
# use_chatglm = False
# try:
#     chatglm_model_name = "THUDM/chatglm-6b-int4"
#     chatglm_tokenizer = AutoTokenizer.from_pretrained(chatglm_model_name, trust_remote_code=True)
#     chatglm_model = AutoModel.from_pretrained(
#         chatglm_model_name,
#         trust_remote_code=True,
#         device_map="cpu",
#         torch_dtype=torch.float32
#     ).eval()
#     use_chatglm = True
#     print("✅ 4-bit量化版ChatGLM加载成功")
# except Exception as e:
#     print(f"❌ ChatGLM加载失败: {e}")

# ======================== 知识图谱结构 ========================
knowledge_graph = {"entities": set(), "relations": set()}


def update_knowledge_graph(entities, relations):
    # 保存实体
    for e in entities:
        if isinstance(e, dict) and 'text' in e and 'type' in e:
            save_to_db('entities', {
                'text': e['text'],
                'type': e['type'],
                'start_pos': e.get('start', -1),
                'end_pos': e.get('end', -1),
                'source': 'user_input'
            })

    # 保存关系
    for r in relations:
        if isinstance(r, dict) and all(k in r for k in ("head", "tail", "relation")):
            save_to_db('relations', {
                'head_entity': r['head'],
                'tail_entity': r['tail'],
                'relation_type': r['relation'],
                'source_text': ''  # 可添加原文关联
            })


def visualize_kg_text():
    nodes = [f"{ent[0]} ({ent[1]})" for ent in knowledge_graph["entities"]]
    edges = [f"{h} --[{r}]-> {t}" for h, t, r in knowledge_graph["relations"]]
    return "\n".join(["📌 实体:"] + nodes + ["", "📎 关系:"] + edges)

# ======================== 实体识别(NER) ========================
def merge_adjacent_entities(entities):
    if not entities:
        return entities

    merged = [entities[0]]
    for entity in entities[1:]:
        last = merged[-1]
        # 合并相邻的同类型实体
        if (entity["type"] == last["type"] and
                entity["start"] == last["end"]):
            last["text"] += entity["text"]
            last["end"] = entity["end"]
        else:
            merged.append(entity)

    return merged


def ner(text, model_type="bert"):
    start_time = time.time()

    # 如果使用的是 ChatGLM 模型,执行 ChatGLM 的NER
    if model_type == "chatglm" and use_chatglm:
        try:
            prompt = f"""请从以下文本中识别所有实体,严格按照JSON列表格式返回,每个实体包含text、type、start、end字段:

示例:[{{"text": "北京", "type": "LOC", "start": 0, "end": 2}}]

文本:{text}"""
            response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.1)
            if isinstance(response, tuple):
                response = response[0]

            try:
                json_str = re.search(r'\[.*\]', response, re.DOTALL).group()
                entities = json.loads(json_str)
                valid_entities = [ent for ent in entities if all(k in ent for k in ("text", "type", "start", "end"))]
                return valid_entities, time.time() - start_time
            except Exception as e:
                print(f"JSON解析失败: {e}")
                return [], time.time() - start_time
        except Exception as e:
            print(f"ChatGLM调用失败: {e}")
            return [], time.time() - start_time

    # 使用BERT NER
    text_chunks = [text[i:i + 510] for i in range(0, len(text), 510)]  # 安全分段
    raw_results = []
    for idx, chunk in enumerate(text_chunks):
        chunk_results = bert_ner_pipeline(chunk)
        for r in chunk_results:
            r["start"] += idx * 510
            r["end"] += idx * 510
        raw_results.extend(chunk_results)

    entities = [{
        "text": r['word'].replace(' ', ''),
        "start": r['start'],
        "end": r['end'],
        "type": LABEL_MAPPING.get(r.get('entity_group') or r.get('entity'), r.get('entity_group') or r.get('entity'))
    } for r in raw_results]

    entities = merge_adjacent_entities(entities)
    return entities, time.time() - start_time


# ------------------ 实体类型标准化 ------------------
LABEL_MAPPING = {
    "address": "LOC",
    "company": "ORG",
    "name": "PER",
    "organization": "ORG",
    "position": "TITLE",
    "government": "ORG",
    "scene": "LOC",
    "book": "WORK",
    "movie": "WORK",
    "game": "WORK"
}

# 提取实体
entities, processing_time = ner("Google in New York met Alice")

# 标准化实体类型
for e in entities:
    e["type"] = LABEL_MAPPING.get(e.get("type"), e.get("type"))

# 打印标准化后的实体
print(f"[DEBUG] 标准化后实体列表: {[{'text': e['text'], 'type': e['type']} for e in entities]}")

# 打印处理时间
print(f"处理时间: {processing_time:.2f}秒")


# ======================== 关系抽取(RE) ========================
import re
import json

def re_extract(entities, text, use_bert_model=True, bert_model=None):
    # ------------------ 参数校验 ------------------
    if not entities or not text:
        print("[DEBUG] 参数校验失败,实体或文本为空")
        return []

    valid_entity_types = {"PER", "LOC", "ORG", "TITLE"}
    filtered_entities = [e for e in entities if e.get("type") in valid_entity_types]

    if not filtered_entities:
        print("[DEBUG] 未找到有效的实体")
        return []

    # ------------------ 单实体场景 ------------------
    if len(filtered_entities) == 1:
        single_relations = []
        ent = filtered_entities[0]
        print(f"[DEBUG] 处理单实体:{ent['text']},类型:{ent['type']}")

        if ent["type"] == "PER":
            position_keywords = ["CEO", "经理", "总监", "工程师", "教授", "首席"]
            # 基于关键词判断
            for keyword in position_keywords:
                if keyword in text:
                    print(f"[DEBUG] 发现职位关键词:{keyword}")
                    single_relations.append({
                        "head": ent["text"],
                        "tail": keyword,
                        "relation": "担任职位"
                    })
                    break
            # 基于句式:“张三是首席科学家”
            match = re.search(rf"{ent['text']}是(.{{1,10}}?)(?:,|。|的)?", text)
            if match:
                title = match.group(1)
                if any(t in title for t in position_keywords):
                    print(f"[DEBUG] 句式识别职位:{title}")
                    single_relations.append({
                        "head": ent["text"],
                        "tail": title,
                        "relation": "担任职位"
                    })

        elif ent["type"] in ["ORG", "LOC"]:
            location_verbs = ["位于", "坐落于", "地处"]
            for verb in location_verbs:
                match = re.search(fr"{ent['text']}{verb}(.+?)[,。]", text)
                if match:
                    print(f"[DEBUG] 发现位置关系:{ent['text']} {verb} {match.group(1)}")
                    single_relations.append({
                        "head": ent["text"],
                        "tail": match.group(1).strip(),
                        "relation": "位置"
                    })
                    break
        return single_relations

    # ------------------ 多实体关系抽取 ------------------
    relations = []

    if use_bert_model and len(filtered_entities) >= 2:
        try:
            entity_list = [e["text"] for e in filtered_entities]
            prompt = f"""请分析以下文本中的实体关系,严格按照JSON列表格式返回:

文本内容:{text}

候选实体:{entity_list}

要求:

1. 只返回存在明确关系的实体对

2. 关系类型使用:属于、位于、任职于、合作、其他

3. 示例格式:[{{"head":"实体1", "tail":"实体2", "relation":"关系类型"}}]

请直接返回JSON,不要多余内容:"""

            response = bert_model.predict(prompt)  # 模型接口自定义
            json_str = re.search(r'(\[.*?\])', response, re.DOTALL)
            if json_str:
                json_str = json_str.group(1)
                json_str = re.sub(r'[\u201c\u201d]', '"', json_str)
                json_str = re.sub(r'(?<!,)\n', '', json_str)
                parsed = json.loads(json_str)

                valid_types = {"属于", "位于", "任职于", "合作", "其他"}
                entity_texts = set(e["text"] for e in filtered_entities)
                for rel in parsed:
                    if (
                        isinstance(rel, dict)
                        and rel.get("head") in entity_texts
                        and rel.get("tail") in entity_texts
                        and rel.get("relation") in valid_types
                    ):
                        print(f"[DEBUG] 模型抽取关系:{rel}")
                        relations.append(rel)
            else:
                print("[DEBUG] 未能解析出关系JSON")
        except Exception as e:
            print(f"[DEBUG] BERT模型关系抽取异常: {str(e)}")

    # ------------------ 规则兜底 ------------------
    if len(relations) == 0:
        print("[DEBUG] 启用规则兜底抽取关系")

        # A位于B
        for match in re.finditer(r'([^\s,。]+?)(?:位于|坐落于|地处)([^\s,。]+)', text):
            head, tail = match.groups()
            print(f"[DEBUG] 发现位于关系:{head} 位于 {tail}")
            relations.append({"head": head, "tail": tail, "relation": "位于"})

        # A属于B
        for match in re.finditer(r'([^\s,。]+?)(?:属于|隶属于)([^\s,。]+)', text):
            head, tail = match.groups()
            print(f"[DEBUG] 发现属于关系:{head} 属于 {tail}")
            relations.append({"head": head, "tail": tail, "relation": "属于"})

        # 人物-机构(张三 就职于 腾讯公司)
        person_org_pattern = r'([\u4e00-\u9fa5]{2,4})(?:现任|担任|就职于)([\u4e00-\u9fa5]+?公司|[\u4e00-\u9fa5]+?大学)'
        for match in re.finditer(person_org_pattern, text):
            head, tail = match.groups()
            print(f"[DEBUG] 发现任职关系:{head} 任职于 {tail}")
            relations.append({"head": head, "tail": tail, "relation": "任职于"})

    # ------------------ 去重与验证 ------------------
    seen = set()
    final_relations = []
    entity_text_set = set(e["text"] for e in filtered_entities)
    for rel in relations:
        key = (rel["head"], rel["tail"], rel["relation"])
        if key not in seen and rel["head"] in entity_text_set and rel["tail"] in entity_text_set:
            final_relations.append(rel)
            seen.add(key)
            print(f"[DEBUG] 添加有效关系:{rel}")
        else:
            print(f"[DEBUG] 忽略无效关系:{rel}")

    return final_relations


# ======================== 文本分析主流程 ========================
def process_text(text, model_type="bert"):
    entities, duration = ner(text, model_type)
    relations = re_extract(entities, text)
    update_knowledge_graph(entities, relations)

    DISPLAY_LABELS = {
        "PER": "人名",
        "LOC": "地点",
        "ORG": "机构",
        "TIME": "时间",
        "TITLE": "职位",
        "PRODUCT": "产品"
    }

    ent_text = "\n".join(
        f"{e['text']} ({DISPLAY_LABELS.get(e['type'], e['type'])}) [{e['start']}-{e['end']}]"
        for e in entities
    )
    rel_text = "\n".join(f"{r['head']} --[{r['relation']}]-> {r['tail']}" for r in relations)
    kg_text = visualize_kg_text()

    return ent_text, rel_text, kg_text, f"{duration:.2f} 秒"


def process_file(file, model_type="bert"):
    try:
        with open(file.name, 'rb') as f:
            content = f.read()

        if len(content) > 5 * 1024 * 1024:
            return "❌ 文件太大", "", "", ""

        # 检测编码
        try:
            encoding = chardet.detect(content)['encoding'] or 'utf-8'
            text = content.decode(encoding)
        except UnicodeDecodeError:
            # 尝试常见中文编码
            for enc in ['gb18030', 'utf-16', 'big5'] :
                try:
                    text = content.decode(enc)
                    break
                except:
                    continue
            else:
                return "❌ 编码解析失败", "", "", ""

        return process_text(text, model_type)
    except Exception as e:
        return f"❌ 文件处理错误: {str(e)}", "", "", ""



# ======================== 模型评估与自动标注 ========================
def convert_telegram_json_to_eval_format(path):
    with open(path, encoding="utf-8") as f:
        data = json.load(f)
    if isinstance(data, dict) and "text" in data:
        return [{"text": data["text"], "entities": [
            {"text": data["text"][e["start"]:e["end"]]} for e in data.get("entities", [])
        ]}]
    elif isinstance(data, list):
        return data
    elif isinstance(data, dict) and "messages" in data:
        result = []
        for m in data.get("messages", []):
            if isinstance(m.get("text"), str):
                result.append({"text": m["text"], "entities": []})
            elif isinstance(m.get("text"), list):
                txt = ''.join([x["text"] if isinstance(x, dict) else x for x in m["text"]])
                result.append({"text": txt, "entities": []})
        return result
    return []


def evaluate_ner_model(data, model_type):
    tp, fp, fn = 0, 0, 0
    POS_TOLERANCE = 1

    for item in data:
        text = item["text"]
        # 处理标注数据
        gold_entities = []
        for e in item.get("entities", []):
            if "text" in e and "type" in e:
                norm_type = LABEL_MAPPING.get(e["type"], e["type"])
                gold_entities.append({
                    "text": e["text"],
                    "type": norm_type,
                    "start": e.get("start", -1),
                    "end": e.get("end", -1)
                })

        # 获取预测结果
        pred_entities, _ = ner(text, model_type)

        # 初始化匹配状态
        matched_gold = [False] * len(gold_entities)
        matched_pred = [False] * len(pred_entities)

        # 遍历预测实体寻找匹配
        for p_idx, p in enumerate(pred_entities):
            for g_idx, g in enumerate(gold_entities):
                if not matched_gold[g_idx] and \
                        p["text"] == g["text"] and \
                        p["type"] == g["type"] and \
                        abs(p["start"] - g["start"]) <= POS_TOLERANCE and \
                        abs(p["end"] - g["end"]) <= POS_TOLERANCE:
                    matched_gold[g_idx] = True
                    matched_pred[p_idx] = True
                    break

        # 统计指标
        tp += sum(matched_pred)
        fp += len(pred_entities) - sum(matched_pred)
        fn += len(gold_entities) - sum(matched_gold)

    # 处理除零情况
    precision = tp / (tp + fp) if (tp + fp) > 0 else 0
    recall = tp / (tp + fn) if (tp + fn) > 0 else 0
    f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0

    return (f"Precision: {precision:.2f}\n"
            f"Recall: {recall:.2f}\n"
            f"F1: {f1:.2f}")


def auto_annotate(file, model_type):
    data = convert_telegram_json_to_eval_format(file.name)
    for item in data:
        ents, _ = ner(item["text"], model_type)
        item["entities"] = ents
    return json.dumps(data, ensure_ascii=False, indent=2)


def save_json(json_text):
    fname = f"auto_labeled_{int(time.time())}.json"
    with open(fname, "w", encoding="utf-8") as f:
        f.write(json_text)
    return fname


# ======================== 数据集导入 ========================
def import_dataset(path="D:/云边智算/暗语识别/filtered_results"):
    import os
    import json

    for filename in os.listdir(path):
        if filename.endswith('.json'):
            filepath = os.path.join(path, filename)
            with open(filepath, 'r', encoding='utf-8') as f:
                data = json.load(f)
                # 调用现有处理流程
                process_text(data['text'])
                print(f"已处理文件: {filename}")


# ======================== Gradio 界面 ========================
with gr.Blocks(css="""

    .kg-graph {height: 500px; overflow-y: auto;}

    .warning {color: #ff6b6b;}

""") as demo:
    gr.Markdown("# 🤖 聊天记录实体关系识别系统")

    with gr.Tab("📄 文本分析"):
        input_text = gr.Textbox(lines=6, label="输入文本")
        model_type = gr.Radio(["bert", "chatglm"], value="bert", label="选择模型")
        btn = gr.Button("开始分析")
        out1 = gr.Textbox(label="识别实体")
        out2 = gr.Textbox(label="识别关系")
        out3 = gr.Textbox(label="知识图谱")
        out4 = gr.Textbox(label="耗时")
        btn.click(fn=process_text, inputs=[input_text, model_type], outputs=[out1, out2, out3, out4])

    with gr.Tab("🗂 文件分析"):
        file_input = gr.File(file_types=[".txt", ".json"])
        file_btn = gr.Button("上传并分析")
        fout1, fout2, fout3, fout4 = gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.Textbox()
        file_btn.click(fn=process_file, inputs=[file_input, model_type], outputs=[fout1, fout2, fout3, fout4])

    with gr.Tab("📊 模型评估"):
        eval_file = gr.File(label="上传标注 JSON")
        eval_model = gr.Radio(["bert", "chatglm"], value="bert")
        eval_btn = gr.Button("开始评估")
        eval_output = gr.Textbox(label="评估结果", lines=5)
        eval_btn.click(lambda f, m: evaluate_ner_model(convert_telegram_json_to_eval_format(f.name), m),
                       [eval_file, eval_model], eval_output)

    with gr.Tab("✏️ 自动标注"):
        raw_file = gr.File(label="上传 Telegram 原始 JSON")
        auto_model = gr.Radio(["bert", "chatglm"], value="bert")
        auto_btn = gr.Button("自动标注")
        marked_texts = gr.Textbox(label="标注结果", lines=20)
        download_btn = gr.Button("💾 下载标注文件")
        auto_btn.click(fn=auto_annotate, inputs=[raw_file, auto_model], outputs=marked_texts)
        download_btn.click(fn=save_json, inputs=marked_texts, outputs=gr.File())

    with gr.Tab("📂 数据管理"):
        gr.Markdown("### 数据集导入")
        dataset_path = gr.Textbox(
            value="D:/云边智算/暗语识别/filtered_results",
            label="数据集路径"
        )
        import_btn = gr.Button("导入数据集到数据库")
        import_output = gr.Textbox(label="导入日志")
        import_btn.click(fn=lambda: import_dataset(dataset_path.value), outputs=import_output)

demo.launch(server_name="0.0.0.0", server_port=7860)