File size: 10,207 Bytes
89d0ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d2bf4
 
89d0ad2
18d2bf4
89d0ad2
66e15f7
18d2bf4
6207f64
89d0ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7819
89d0ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d2bf4
89d0ad2
 
 
 
 
 
 
 
 
 
 
6207f64
89d0ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import date, timedelta, datetime
import logging
import sys
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
import requests
import re

# Set up logging
logging.basicConfig(level=logging.INFO, stream=sys.stdout,
                    format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()

def get_last_date():
    return date.today().strftime("%Y-%m-%d")

def get_start_date(interval):
    today = date.today()

    if interval in ['1d', '1wk', '1mo']:
        years_ago = 5
        days_ago = 365*years_ago
    else:
        years_ago = 1
        days_ago = 365*years_ago
    start_date = today - timedelta(days=days_ago)
    return start_date.strftime("%Y-%m-%d")

def fetch_crypto_data(symbol, start_date, end_date, interval='1d'):
    try:
        crypto = yf.Ticker(f"{symbol}-USD")
        data = crypto.history(start=start_date, end=end_date, interval=interval)
        if data.empty:
            logger.warning(f"No data fetched for {symbol}. Please check the symbol and date range.")
            return None
        return data
    except Exception as e:
        logger.warning(f"Error fetching data for {symbol}: {e}")
        return None

def calculate_atr(data, period=14):
    high = data['High']
    low = data['Low']
    close = data['Close']
    tr1 = high - low
    tr2 = abs(high - close.shift())
    tr3 = abs(low - close.shift())
    tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
    atr = tr.rolling(window=period).mean()
    return atr

def calculate_supertrend(data, atr_period, multiplier):
    hl2 = (data['High'] + data['Low']) / 2
    atr = calculate_atr(data, atr_period)
    
    upper_band = hl2 + (multiplier * atr)
    lower_band = hl2 - (multiplier * atr)
    
    supertrend = pd.Series(index=data.index, dtype=float)
    direction = pd.Series(index=data.index, dtype=int)
    
    for i in range(1, len(data)):
        if data['Close'].iloc[i] > upper_band.iloc[i-1]:
            direction.iloc[i] = 1
        elif data['Close'].iloc[i] < lower_band.iloc[i-1]:
            direction.iloc[i] = -1
        else:
            direction.iloc[i] = direction.iloc[i-1]
            
            if direction.iloc[i] == 1 and lower_band.iloc[i] < lower_band.iloc[i-1]:
                lower_band.iloc[i] = lower_band.iloc[i-1]
            if direction.iloc[i] == -1 and upper_band.iloc[i] > upper_band.iloc[i-1]:
                upper_band.iloc[i] = upper_band.iloc[i-1]
        
        if direction.iloc[i] == 1:
            supertrend.iloc[i] = lower_band.iloc[i]
        else:
            supertrend.iloc[i] = upper_band.iloc[i]
    
    # Generate buy/sell signals
    signals = pd.Series(index=data.index, dtype=str)
    signals.iloc[0] = ''
    for i in range(1, len(data)):
        if direction.iloc[i] == 1 and direction.iloc[i-1] == -1:
            signals.iloc[i] = 'BUY'
        elif direction.iloc[i] == -1 and direction.iloc[i-1] == 1:
            signals.iloc[i] = 'SELL'
        else:
            signals.iloc[i] = ''
    
    return supertrend, signals

def ema(series, period):
    return series.ewm(span=period, adjust=False).mean()

def range_size(x, qty, n):
    wper = (n * 2) - 1
    avrng = ema(abs(x - x.shift(1)), n)
    AC = ema(avrng, wper) * qty
    return AC

def range_filter(x, rng_, n):
    r = rng_
    rfilt = pd.Series(index=x.index, dtype=float)
    rfilt.iloc[0] = x.iloc[0]
    
    for i in range(1, len(x)):
        if x.iloc[i] - r.iloc[i] > rfilt.iloc[i-1]:
            rfilt.iloc[i] = x.iloc[i] - r.iloc[i]
        elif x.iloc[i] + r.iloc[i] < rfilt.iloc[i-1]:
            rfilt.iloc[i] = x.iloc[i] + r.iloc[i]
        else:
            rfilt.iloc[i] = rfilt.iloc[i-1]
    
    return rfilt

def vumanchu_swing(data, rng_per, rng_qty):
    close = data['Close']
    r = range_size(close, rng_qty, rng_per)
    filt = range_filter(close, r, rng_per)
    
    fdir = pd.Series(index=data.index, dtype=float)
    fdir.iloc[0] = 0
    
    for i in range(1, len(data)):
        if filt.iloc[i] > filt.iloc[i-1]:
            fdir.iloc[i] = 1
        elif filt.iloc[i] < filt.iloc[i-1]:
            fdir.iloc[i] = -1
        else:
            fdir.iloc[i] = fdir.iloc[i-1]
    
    upward = (fdir == 1).astype(int)
    downward = (fdir == -1).astype(int)
    
    longCond = ((close > filt) & (close > close.shift(1)) & (upward > 0)) | \
               ((close > filt) & (close < close.shift(1)) & (upward > 0))
    shortCond = ((close < filt) & (close < close.shift(1)) & (downward > 0)) | \
                ((close < filt) & (close > close.shift(1)) & (downward > 0))
    
    CondIni = pd.Series(0, index=data.index)
    for i in range(1, len(data)):
        if longCond.iloc[i]:
            CondIni.iloc[i] = 1
        elif shortCond.iloc[i]:
            CondIni.iloc[i] = -1
        else:
            CondIni.iloc[i] = CondIni.iloc[i-1]
    
    signals = pd.Series(index=data.index, dtype=str)
    signals.iloc[0] = ''
    for i in range(1, len(data)):
        if CondIni.iloc[i] == 1 and CondIni.iloc[i-1] == -1:
            signals.iloc[i] = 'BUY'
        elif CondIni.iloc[i] == -1 and CondIni.iloc[i-1] == 1:
            signals.iloc[i] = 'SELL'
        else:
            signals.iloc[i] = ''
    
    return filt, signals

def analyze_crypto(symbol, start_date, end_date, interval):
    data = fetch_crypto_data(symbol, start_date, end_date, interval)
    
    if data is None or len(data) < 100:
        logger.warning(f"Insufficient data for {symbol}. Data points: {len(data) if data is not None else 0}")
        return None
    
    data['SuperTrend_1x'], data['Signal_1x'] = calculate_supertrend(data, 10, 1)
    data['SuperTrend_2x'], data['Signal_2x'] = calculate_supertrend(data, 11, 2)
    data['SuperTrend_3x'], data['Signal_3x'] = calculate_supertrend(data, 12, 3)
    
    # VuManchu Swing
    swing_period = 20
    swing_multiplier = 3.5
    data['VuManchu'], data['VuManchu_Signal'] = vumanchu_swing(data, swing_period, swing_multiplier)

    return data

def get_top_crypto_symbols():
    url = "https://api.coingecko.com/api/v3/coins/markets"
    params = {
        "vs_currency": "usd",
        "order": "market_cap_desc",
        "per_page": 100,
        "page": 1,
        "sparkline": False
    }
    response = requests.get(url, params=params)
    if response.status_code == 200:
        data = response.json()
        return [coin['symbol'].upper() for coin in data]
    else:
        logger.error("Failed to fetch top cryptocurrencies")
        return []

def get_signals(symbol, start_date, end_date, interval):
    data = analyze_crypto(symbol, start_date, end_date, interval)
    if data is not None:
        if interval == '1d':
            signals = data.last('7D')
        elif interval == '1wk':
            signals = data.last('8W')
        else:
            signals = data.last('7D')  # Default to 1 week for other intervals
        
        signals = signals[['Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']].copy()
        signals['Symbol'] = symbol
        signals['Date'] = signals.index.date
        logger.info(f"Generated signals for {symbol}:\n{signals}")
        return signals
    return None

def process_batch(symbols, start_date, end_date, interval):
    results = []
    with ThreadPoolExecutor(max_workers=2) as executor:
        future_to_crypto = {executor.submit(get_signals, symbol, start_date, end_date, interval): symbol for symbol in symbols}
        for future in as_completed(future_to_crypto):
            symbol = future_to_crypto[future]
            try:
                signals = future.result()
                if signals is not None and not signals.empty:
                    results.append(signals)
                else:
                    logger.warning(f"No signals generated for {symbol}")
            except Exception as exc:
                logger.error(f'{symbol} generated an exception: {exc}')
    return results

def main():
    cryptos_input = input("Enter cryptocurrency symbol(s) to analyze (comma-separated) or press Enter for top 100: ").strip().upper()
    interval = input("Enter time interval (1d or 1wk): ").lower()
    
    if interval not in ['1d', '1wk']:
        logger.warning("Invalid interval. Defaulting to 1d.")
        interval = '1d'

    if cryptos_input:
        # Use regex to split the input string into individual crypto symbols
        cryptos = re.findall(r'\b[A-Z]+\b', cryptos_input)
    else:
        logger.info("Fetching top 100 cryptocurrencies...")
        cryptos = get_top_crypto_symbols()

    end_date = get_last_date()
    start_date = (datetime.strptime(end_date, "%Y-%m-%d") - timedelta(days=365*1)).strftime("%Y-%m-%d")

    logger.info(f"Analyzing {len(cryptos)} cryptocurrencies from {start_date} to {end_date}...")
    
    all_signals = []
    batch_size = 10  # Reduced batch size for API rate limiting
    total_batches = (len(cryptos) + batch_size - 1) // batch_size

    for i in range(0, len(cryptos), batch_size):
        batch = cryptos[i:i+batch_size]
        logger.info(f"Processing batch {i//batch_size + 1} of {total_batches}...")
        batch_results = process_batch(batch, start_date, end_date, interval)
        all_signals.extend(batch_results)
        logger.info(f"Completed batch {i//batch_size + 1} of {total_batches}")

    if all_signals:
        combined_signals = pd.concat(all_signals, ignore_index=True)
        combined_signals = combined_signals[['Date', 'Symbol', 'Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']]
        
        output_dir = 'vumanchu/output'
        os.makedirs(output_dir, exist_ok=True)
        output_file = os.path.join(output_dir, f'all_crypto_signals_{interval}_{datetime.now().strftime("%Y%m%d_%H%M%S")}.csv')
        combined_signals.to_csv(output_file, index=False)
        print(f"\nSignals for all analyzed cryptocurrencies exported to {output_file}")
        
        print("\nSample of the results:")
        print(combined_signals.head(15))  # Increased to show more rows
    else:
        print("No signals generated for any cryptocurrency.")

if __name__ == "__main__":
    main()