File size: 10,066 Bytes
89d0ad2 3fb03e8 89d0ad2 3fb03e8 6f1adf4 89d0ad2 71c8d42 89d0ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import date, timedelta, datetime
import logging
import sys
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
import requests
import re
# Set up logging
logging.basicConfig(level=logging.INFO, stream=sys.stdout,
format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()
def get_last_market_date():
today = date.today()
while today.weekday() >= 5:
today -= timedelta(days=1)
return today.strftime("%Y-%m-%d")
def get_start_date(interval):
today = date.today()
if interval in ['1d', '1wk', '1mo']:
years_ago = 5
days_ago = 365*years_ago
else:
years_ago = 2
days_ago = 365*years_ago
start_date = today - timedelta(days=days_ago)
return start_date.strftime("%Y-%m-%d")
def fetch_asset_data(symbol, start_date, end_date, interval='1d', asset_type='stock'):
try:
if asset_type == 'crypto':
symbol = f"{symbol}-USD"
asset = yf.Ticker(symbol)
data = asset.history(start=start_date, end=end_date, interval=interval)
if data.empty:
logger.warning(f"No data fetched for {asset_type} {symbol}. Please check the symbol and date range.")
return None
return data
except Exception as e:
logger.warning(f"Error fetching data for {asset_type} {symbol}: {e}")
return None
def calculate_atr(data, period=14):
high = data['High']
low = data['Low']
close = data['Close']
tr1 = high - low
tr2 = abs(high - close.shift())
tr3 = abs(low - close.shift())
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
atr = tr.rolling(window=period).mean()
return atr
def calculate_supertrend(data, atr_period, multiplier):
hl2 = (data['High'] + data['Low']) / 2
atr = calculate_atr(data, atr_period)
upper_band = hl2 + (multiplier * atr)
lower_band = hl2 - (multiplier * atr)
supertrend = pd.Series(index=data.index, dtype=float)
direction = pd.Series(index=data.index, dtype=int)
for i in range(1, len(data)):
if data['Close'].iloc[i] > upper_band.iloc[i-1]:
direction.iloc[i] = 1
elif data['Close'].iloc[i] < lower_band.iloc[i-1]:
direction.iloc[i] = -1
else:
direction.iloc[i] = direction.iloc[i-1]
if direction.iloc[i] == 1 and lower_band.iloc[i] < lower_band.iloc[i-1]:
lower_band.iloc[i] = lower_band.iloc[i-1]
if direction.iloc[i] == -1 and upper_band.iloc[i] > upper_band.iloc[i-1]:
upper_band.iloc[i] = upper_band.iloc[i-1]
if direction.iloc[i] == 1:
supertrend.iloc[i] = lower_band.iloc[i]
else:
supertrend.iloc[i] = upper_band.iloc[i]
# Generate buy/sell signals
signals = pd.Series(index=data.index, dtype=str)
signals.iloc[0] = ''
for i in range(1, len(data)):
if direction.iloc[i] == 1 and direction.iloc[i-1] == -1:
signals.iloc[i] = 'BUY'
elif direction.iloc[i] == -1 and direction.iloc[i-1] == 1:
signals.iloc[i] = 'SELL'
else:
signals.iloc[i] = ''
return supertrend, signals
def ema(series, period):
return series.ewm(span=period, adjust=False).mean()
def range_size(x, qty, n):
wper = (n * 2) - 1
avrng = ema(abs(x - x.shift(1)), n)
AC = ema(avrng, wper) * qty
return AC
def range_filter(x, rng_, n):
r = rng_
rfilt = pd.Series(index=x.index, dtype=float)
rfilt.iloc[0] = x.iloc[0]
for i in range(1, len(x)):
if x.iloc[i] - r.iloc[i] > rfilt.iloc[i-1]:
rfilt.iloc[i] = x.iloc[i] - r.iloc[i]
elif x.iloc[i] + r.iloc[i] < rfilt.iloc[i-1]:
rfilt.iloc[i] = x.iloc[i] + r.iloc[i]
else:
rfilt.iloc[i] = rfilt.iloc[i-1]
return rfilt
def vumanchu_swing(data, rng_per, rng_qty):
close = data['Close']
r = range_size(close, rng_qty, rng_per)
filt = range_filter(close, r, rng_per)
fdir = pd.Series(index=data.index, dtype=float)
fdir.iloc[0] = 0
for i in range(1, len(data)):
if filt.iloc[i] > filt.iloc[i-1]:
fdir.iloc[i] = 1
elif filt.iloc[i] < filt.iloc[i-1]:
fdir.iloc[i] = -1
else:
fdir.iloc[i] = fdir.iloc[i-1]
upward = (fdir == 1).astype(int)
downward = (fdir == -1).astype(int)
longCond = ((close > filt) & (close > close.shift(1)) & (upward > 0)) | \
((close > filt) & (close < close.shift(1)) & (upward > 0))
shortCond = ((close < filt) & (close < close.shift(1)) & (downward > 0)) | \
((close < filt) & (close > close.shift(1)) & (downward > 0))
CondIni = pd.Series(0, index=data.index)
for i in range(1, len(data)):
if longCond.iloc[i]:
CondIni.iloc[i] = 1
elif shortCond.iloc[i]:
CondIni.iloc[i] = -1
else:
CondIni.iloc[i] = CondIni.iloc[i-1]
signals = pd.Series(index=data.index, dtype=str)
signals.iloc[0] = ''
for i in range(1, len(data)):
if CondIni.iloc[i] == 1 and CondIni.iloc[i-1] == -1:
signals.iloc[i] = 'BUY'
elif CondIni.iloc[i] == -1 and CondIni.iloc[i-1] == 1:
signals.iloc[i] = 'SELL'
else:
signals.iloc[i] = ''
return filt, signals
def analyze_asset(symbol, start_date, end_date, interval, asset_type='stock'):
data = fetch_asset_data(symbol, start_date, end_date, interval, asset_type)
if data is None or len(data) < 100:
logger.warning(f"Insufficient data for {symbol}. Data points: {len(data) if data is not None else 0}")
return None
data['SuperTrend_1x'], data['Signal_1x'] = calculate_supertrend(data, 10, 1)
data['SuperTrend_2x'], data['Signal_2x'] = calculate_supertrend(data, 11, 2)
data['SuperTrend_3x'], data['Signal_3x'] = calculate_supertrend(data, 12, 3)
# VuManchu Swing
swing_period = 20
swing_multiplier = 3.5
data['VuManchu'], data['VuManchu_Signal'] = vumanchu_swing(data, swing_period, swing_multiplier)
return data
def get_sp500_tickers():
url = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
response = requests.get(url)
tables = pd.read_html(response.text)
df = tables[0]
return df['Symbol'].tolist()
def get_signals(symbol, start_date, end_date, interval):
data = analyze_asset(symbol, start_date, end_date, interval)
if data is not None:
if interval == '1d':
signals = data.last('7D')
elif interval == '1wk':
signals = data.last('8W') # Changed to 8 weeks
else:
signals = data.last('7D') # Default to 1 week for other intervals
signals = signals[['Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']].copy()
signals['Symbol'] = symbol
signals['Date'] = signals.index.date
logger.info(f"Generated signals for {symbol}:\n{signals}")
return signals
return None
def process_batch(symbols, start_date, end_date, interval):
results = []
with ThreadPoolExecutor(max_workers=10) as executor:
future_to_stock = {executor.submit(get_signals, symbol, start_date, end_date, interval): symbol for symbol in symbols}
for future in as_completed(future_to_stock):
symbol = future_to_stock[future]
try:
signals = future.result()
if signals is not None and not signals.empty:
results.append(signals)
else:
logger.warning(f"No signals generated for {symbol}")
except Exception as exc:
logger.error(f'{symbol} generated an exception: {exc}')
return results
def main():
stocks_input = input("Enter stock symbol(s) to analyze (comma-separated) or press Enter for S&P 500: ").strip().upper()
interval = input("Enter time interval (1d or 1wk): ").lower()
if interval not in ['1d', '1wk']:
logger.warning("Invalid interval. Defaulting to 1d.")
interval = '1d'
if stocks_input:
# Use regex to split the input string into individual stock symbols
stocks = re.findall(r'\b[A-Z]+\b', stocks_input)
else:
logger.info("Fetching S&P 500 stocks...")
stocks = get_sp500_tickers()
end_date = get_last_market_date()
start_date = (datetime.strptime(end_date, "%Y-%m-%d") - timedelta(days=365*2)).strftime("%Y-%m-%d")
logger.info(f"Analyzing {len(stocks)} stocks from {start_date} to {end_date}...")
all_signals = []
batch_size = 50
total_batches = (len(stocks) + batch_size - 1) // batch_size
for i in range(0, len(stocks), batch_size):
batch = stocks[i:i+batch_size]
logger.info(f"Processing batch {i//batch_size + 1} of {total_batches}...")
batch_results = process_batch(batch, start_date, end_date, interval)
all_signals.extend(batch_results)
logger.info(f"Completed batch {i//batch_size + 1} of {total_batches}")
if all_signals:
combined_signals = pd.concat(all_signals, ignore_index=True)
combined_signals = combined_signals[['Date', 'Symbol', 'Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']]
output_dir = 'vumanchu/output'
os.makedirs(output_dir, exist_ok=True)
output_file = os.path.join(output_dir, f'all_stocks_signals_{interval}_{datetime.now().strftime("%Y%m%d_%H%M%S")}.csv')
combined_signals.to_csv(output_file, index=False)
print(f"\nSignals for all analyzed stocks exported to {output_file}")
print("\nSample of the results:")
print(combined_signals.head(15)) # Increased to show more rows
else:
print("No signals generated for any stock.")
if __name__ == "__main__":
main() |