File size: 7,144 Bytes
ec35913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b156c93b-7114-4401-8956-0bbdf3f55819",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/cheikh/anaconda3/lib/python3.12/site-packages/sklearn/base.py:376: InconsistentVersionWarning: Trying to unpickle estimator DecisionTreeClassifier from version 1.5.2 when using version 1.4.2. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:\n",
      "https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations\n",
      "  warnings.warn(\n",
      "/home/cheikh/anaconda3/lib/python3.12/site-packages/sklearn/base.py:376: InconsistentVersionWarning: Trying to unpickle estimator RandomForestClassifier from version 1.5.2 when using version 1.4.2. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:\n",
      "https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations\n",
      "  warnings.warn(\n",
      "/home/cheikh/anaconda3/lib/python3.12/site-packages/gradio/blocks.py:1049: UserWarning: Cannot load huggingface. Caught Exception: 404 Client Error: Not Found for url: https://huggingface.co/api/spaces/huggingface (Request ID: Root=1-6761d6db-0c06b74870454450704094b9;d4cdbbda-a206-4969-bdc5-e2685d9d5157)\n",
      "\n",
      "Sorry, we can't find the page you are looking for.\n",
      "  warnings.warn(f\"Cannot load {theme}. Caught Exception: {str(e)}\")\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7862\n",
      "* Running on public URL: https://3202cd86a5db7b27c9.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://3202cd86a5db7b27c9.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "import os\n",
    "import joblib\n",
    "import pefile\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import gradio as gr\n",
    "import hashlib\n",
    "\n",
    "\n",
    "# Charger le modèle pré-entraîné\n",
    "try:\n",
    "    model = joblib.load('random_forest_model.pkl')\n",
    "except Exception as e:\n",
    "    print(f\"Erreur de chargement du modèle : {e}\")\n",
    "    model = None\n",
    "\n",
    "def calculate_file_hash(file_path):\n",
    "    \"\"\"Calculer le hash SHA-256 du fichier.\"\"\"\n",
    "    sha256_hash = hashlib.sha256()\n",
    "    with open(file_path, \"rb\") as f:\n",
    "        for byte_block in iter(lambda: f.read(4096), b\"\"):\n",
    "            sha256_hash.update(byte_block)\n",
    "    return sha256_hash.hexdigest()\n",
    "\n",
    "def extract_pe_attributes(file_path):\n",
    "    \"\"\"Extraction avancée des attributs du fichier PE.\"\"\"\n",
    "    try:\n",
    "        pe = pefile.PE(file_path)\n",
    "\n",
    "        attributes = {\n",
    "            # Attributs PE standard\n",
    "            'AddressOfEntryPoint': pe.OPTIONAL_HEADER.AddressOfEntryPoint,\n",
    "            'MajorLinkerVersion': pe.OPTIONAL_HEADER.MajorLinkerVersion,\n",
    "            'MajorImageVersion': pe.OPTIONAL_HEADER.MajorImageVersion,\n",
    "            'MajorOperatingSystemVersion': pe.OPTIONAL_HEADER.MajorOperatingSystemVersion,\n",
    "            'DllCharacteristics': pe.OPTIONAL_HEADER.DllCharacteristics,\n",
    "            'SizeOfStackReserve': pe.OPTIONAL_HEADER.SizeOfStackReserve,\n",
    "            'NumberOfSections': pe.FILE_HEADER.NumberOfSections,\n",
    "             'ResourceSize':pe.OPTIONAL_HEADER.DATA_DIRECTORY[2].Size\n",
    "        }\n",
    "        \n",
    "        \"\"\"## Ressources\n",
    "        data_directory_entries = pe.OPTIONAL_HEADER.DATA_DIRECTORY\n",
    "        # Parcourir la liste pour trouver l'entrée du répertoire des ressources\n",
    "        for entry in data_directory_entries:\n",
    "            if entry.name == \"IMAGE_DIRECTORY_ENTRY_RESOURCE\":\n",
    "                resource_size = entry.Size\n",
    "                attributes['ResourceSize'] = resource_size\n",
    "                break\n",
    "        else:\n",
    "            attributes['ResourceSize'] = 0\"\"\"\n",
    "            \n",
    "\n",
    "\n",
    "        return attributes\n",
    "    except Exception as e:\n",
    "        print(f\"Erreur de traitement du fichier {file_path}: {str(e)}\")\n",
    "        return f\"Erreur de traitement du fichier {file_path}: {str(e)}\"\n",
    "\n",
    "def predict_malware(file):\n",
    "    \"\"\"Prédiction de malware avec gestion d'erreurs.\"\"\"\n",
    "    if model is None:\n",
    "        return \"Erreur : Modèle non chargé\"\n",
    "\n",
    "    try:\n",
    "        # Extraire les attributs du fichier\n",
    "        attributes = extract_pe_attributes(file.name)\n",
    "        if \"Erreur\" in attributes:\n",
    "            return attributes\n",
    "\n",
    "        # Convertir en DataFrame\n",
    "        df = pd.DataFrame([attributes])\n",
    "\n",
    "        # Prédiction\n",
    "        prediction = model.predict(df)\n",
    "        proba = model.predict_proba(df)[0]\n",
    "\n",
    "        # Résultat avec probabilité\n",
    "        if prediction[0] == 1:\n",
    "            return f\"🚨 MALWARE (Probabilité: {proba[1] * 100:.2f}%)\"\n",
    "        else:\n",
    "            return f\"Fichier Légitime (Probabilité: {proba[0] * 100:.2f}%)\"\n",
    "    except Exception as e:\n",
    "        return f\"Erreur d'analyse : {str(e)}\"\n",
    "\n",
    "# Interface Gradio\n",
    "demo = gr.Interface(\n",
    "    fn=predict_malware,\n",
    "    inputs=gr.File(file_types=['.exe', '.dll', '.sys'], label=\"Télécharger un fichier exécutable\"),\n",
    "    outputs=\"text\",\n",
    "    title=\"🛡️ Détecteur de Malwares\",\n",
    "    theme='huggingface'  # Thème moderne\n",
    ")\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    demo.launch(share=True)  # Rend l'interface accessible publiquement\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}