Spaces:
Runtime error
Runtime error
File size: 33,445 Bytes
29c5a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import os
import torch
from torch.utils.data import (SequentialSampler)
import numpy as np
import random
from thop import profile
from metrics import logging_rank
import time
import argparse
from sklearn import preprocessing
from transformers import BertTokenizer, AutoTokenizer, AutoModel
from tensorboardX import SummaryWriter
from modules.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from modules.tokenization_clip import SimpleTokenizer as ClipTokenizer
from modules.modeling import BirdModel_VT, BirdPreTrainedModel, BirdModel
from modules.optimization import BertAdam
from dataloaders.dataloader import DATALOADER_DICT
from modules.until_module import get_dual_matrix
from util import parallel_apply, get_logger
from torch.cuda.amp import autocast, GradScaler
torch.distributed.init_process_group(backend="nccl")
global logger
def get_args(description='CLIP4Clip on Retrieval Task'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument("--do_pretrain", action='store_true', help="Whether to run training.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_params", action='store_true', help="text the params of the model.")
parser.add_argument("--use_frame_fea", action='store_true', help="whether use frame feature matching text")
parser.add_argument('--task', type=str, default="retrieval", choices=["retrieval_VT", "retrieval"],
help="choose downstream task.")
parser.add_argument('--dataset', type=str, default="bird", choices=["bird", "msrvtt", "vatex", "msvd"],
help="choose dataset.")
parser.add_argument('--num_thread_reader', type=int, default=1, help='')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument('--text_lr', type=float, default=0.00001, help='text encoder learning rate')
parser.add_argument('--epochs', type=int, default=20, help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--batch_size_val', type=int, default=3500, help='batch size eval')
parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate exp epoch decay')
parser.add_argument('--weight_decay', type=float, default=0.2, help='Learning rate exp epoch decay')
parser.add_argument('--n_display', type=int, default=100, help='Information display frequence')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--max_words', type=int, default=32, help='')
parser.add_argument('--max_frames', type=int, default=12, help='')
parser.add_argument('--top_frames', type=int, default=3, help='')
parser.add_argument('--frame_sample', type=str, default="uniform", choices=["uniform", "random", "uniform_random"],
help='frame sample strategy')
parser.add_argument('--frame_sample_len', type=str, default="fix", choices=["dynamic", "fix"],
help='use dynamic frame length of fix frame length')
parser.add_argument('--language', type=str, default="chinese", choices=["chinese", "english"],
help='language for text encoder')
parser.add_argument('--use_temp', action='store_true', help='whether to use temporal transformer')
parser.add_argument("--logdir", default=None, type=str, required=False, help="log dir for tensorboardX writer")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--cross_model", default="cross-base", type=str, required=False, help="Cross module")
parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--n_gpu', type=int, default=1, help="Changed in the execute process.")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--enable_amp', action='store_true', help="whether to use pytorch amp")
parser.add_argument("--world_size", default=0, type=int, help="distribted training")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument("--rank", default=0, type=int, help="distribted training")
parser.add_argument('--coef_lr', type=float, default=1., help='coefficient for bert branch.')
args = parser.parse_args()
# Check paramenters
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.do_train and not args.do_eval and not args.do_params:
raise ValueError("At least one of `do_train` or `do_eval` or 'do_params' must be True.")
args.batch_size = int(args.batch_size / args.gradient_accumulation_steps)
return args
def set_seed_logger(args):
global logger
# predefining random initial seeds
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
world_size = torch.distributed.get_world_size()
torch.cuda.set_device(args.local_rank)
args.world_size = world_size
rank = torch.distributed.get_rank()
args.rank = rank
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger(os.path.join(args.output_dir, "log.txt"))
if args.local_rank == 0:
if args.logdir:
args.writer = SummaryWriter(args.logdir)
logger.info("Effective parameters:")
for key in sorted(args.__dict__):
logger.info(" <<< {}: {}".format(key, args.__dict__[key]))
return args
def init_device(args, local_rank):
global logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", local_rank)
n_gpu = torch.cuda.device_count()
logger.info("device: {} n_gpu: {}".format(device, n_gpu))
args.n_gpu = n_gpu
if args.batch_size % args.n_gpu != 0 or args.batch_size_val % args.n_gpu != 0:
raise ValueError(
"Invalid batch_size/batch_size_val and n_gpu parameter: {}%{} and {}%{}, should be == 0".format(
args.batch_size, args.n_gpu, args.batch_size_val, args.n_gpu))
return device, n_gpu
def init_model(args, device, n_gpu, local_rank):
if args.init_model:
model_state_dict = torch.load(args.init_model, map_location='cpu')
else:
model_state_dict = None
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
if args.task == "retrieval_VT":
model = BirdModel_VT.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict,
task_config=args)
elif args.task == "retrieval":
model = BirdModel.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict,
task_config=args)
else:
raise Exception('wrong task! task should in [retrieve_VT, retrieve]')
# args.writer.add_graph(model)
model.to(device)
return model
def prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, local_rank, coef_lr=1.):
if hasattr(model, 'module'):
model = model.module
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
decay_param_tp = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_decay)]
no_decay_param_tp = [(n, p) for n, p in param_optimizer if any(nd in n for nd in no_decay)]
decay_clip_param_tp = [(n, p) for n, p in decay_param_tp if "visual_encoder.visual." in n]
decay_chinesebert_param_tp = [(n, p) for n, p in decay_param_tp if "text_encoder." in n]
decay_noclip_param_tp = [(n, p) for n, p in decay_param_tp if
("visual_encoder.visual." not in n) and ("text_encoder." not in n)]
no_decay_clip_param_tp = [(n, p) for n, p in no_decay_param_tp if "visual_encoder.visual." in n]
no_decay_text_param_tp = [(n, p) for n, p in no_decay_param_tp if "text_encoder." in n]
no_decay_noclip_param_tp = [(n, p) for n, p in no_decay_param_tp if
("visual_encoder.visual." not in n) and ("text_encoder." not in n)]
weight_decay = args.weight_decay
optimizer_grouped_parameters = [
{'params': [p for n, p in decay_clip_param_tp], 'weight_decay': weight_decay, 'lr': args.lr * coef_lr},
{'params': [p for n, p in decay_chinesebert_param_tp], 'weight_decay': weight_decay, 'lr': args.text_lr},
{'params': [p for n, p in decay_noclip_param_tp], 'weight_decay': weight_decay},
{'params': [p for n, p in no_decay_clip_param_tp], 'weight_decay': 0.0, 'lr': args.lr * coef_lr},
{'params': [p for n, p in no_decay_text_param_tp], 'weight_decay': 0.0, 'lr': args.text_lr},
{'params': [p for n, p in no_decay_noclip_param_tp], 'weight_decay': 0.0}
]
scheduler = None
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.lr, warmup=args.warmup_proportion,
schedule='warmup_cosine', b1=0.9, b2=0.98, e=1e-6,
t_total=num_train_optimization_steps, weight_decay=weight_decay,
max_grad_norm=1.0)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],
output_device=local_rank, find_unused_parameters=True)
# if args.local_rank == 0:
# for name, parameters in model.named_parameters():
# logger.info("name:{} requires_grad:{} size:{}".format(name, parameters.requires_grad, parameters.size()))
return optimizer, scheduler, model
def save_model(epoch, args, model, type_name=""):
# Only save the model it-self
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(
args.output_dir, "pytorch_model.bin.{}{}".format("" if type_name == "" else type_name + ".", epoch))
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Model saved to %s", output_model_file)
return output_model_file
def load_model(epoch, args, n_gpu, device, model_file=None):
if model_file is None or len(model_file) == 0:
model_file = os.path.join(args.output_dir, "pytorch_model.bin.{}".format(epoch))
if os.path.exists(model_file):
model_state_dict = torch.load(model_file, map_location='cpu')
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
'distributed')
if args.task == "retrieval":
model = BirdModel.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict,
task_config=args)
elif args.task == "retrieval_VT":
model = BirdModel_VT.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict,
task_config=args)
else:
model = None
model.to(device)
else:
model = None
return model
def train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer, scheduler, scaler, global_step, local_rank=0):
global logger
torch.cuda.empty_cache()
model.train()
log_step = args.n_display
start_time = time.time()
total_loss = 0
load_start_time = time.time()
for step, batch in enumerate(train_dataloader):
load_finish_time = time.time()
if global_step % log_step == 0 and local_rank == 0:
logger.info("data loader time:{}".format(load_finish_time - load_start_time))
global_step += 1
if n_gpu == 1:
# multi-gpu does scattering it-self
batch = tuple(t.to(device=device, non_blocking=True) for t in batch)
with autocast(enabled=args.enable_amp):
if args.task == "retrieval_VT":
query_ids, query_mask, video_data, video_frame, title_ids, title_mask, idx = batch
loss = model(query_ids, query_mask, video_data, video_frame, title_ids, title_mask, idx, global_step)
elif args.task == "retrieval":
query_ids, query_mask, video_data, video_frame, idx = batch
loss = model(query_ids, query_mask, video_data, video_frame, idx, global_step)
else:
raise ValueError("wrong task type:{}".format(args.task))
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
forward_time = time.time()
if args.enable_amp:
scaler.scale(loss).backward()
else:
loss.backward()
total_loss += float(loss)
backward_time = time.time()
if global_step % log_step == 0 and local_rank == 0:
logger.info("forward_time:{},backward_time:{}".format(forward_time - load_finish_time, backward_time - forward_time))
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if scheduler is not None:
scheduler.step() # Update learning rate schedule
if args.enable_amp:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
if global_step % log_step == 0 and local_rank == 0:
logger.info("Epoch: %d/%s, Step: %d/%d, Lr: %s, Loss: %f, Time/step: %f", epoch + 1,
args.epochs, step + 1,
len(train_dataloader),
"-".join([str('%.9f' % itm) for itm in sorted(list(set(optimizer.get_lr())))]),
float(loss),
(time.time() - start_time) / (log_step * args.gradient_accumulation_steps))
if args.logdir:
# args.writer.add_scalar('loss', loss.item(), global_step=global_step)
args.writer.add_scalars('lr', {"lr%d" % i: itm for i, itm in enumerate(sorted(list(set(optimizer.get_lr()))))},
global_step=global_step)
start_time = time.time()
load_start_time = time.time()
total_loss = total_loss / len(train_dataloader)
return total_loss, global_step
def _run_on_single_gpu(model, batch_query_output_list, batch_visual_output_list, batch_title_output_list,
batch_frame_output_list):
sim_matrix = []
sim_matrix_title = []
sim_matrix_frame = []
for idx1, query_output in enumerate(batch_query_output_list):
each_row = []
title_each_row = []
frame_each_row = []
for idx2, (visual_output, title_output, frame_output) in enumerate(zip(batch_visual_output_list,
batch_title_output_list, batch_frame_output_list)):
b1b2_logits = model.loose_similarity(query_output, visual_output)
title_logits = model.loose_similarity(query_output, title_output)
frame_logits = model.loose_similarity(query_output, frame_output)
frame_logits = torch.topk(frame_logits, k=model.top_frames, dim=2)[0]
frame_logits = torch.mean(frame_logits, dim=2)
b1b2_logits = b1b2_logits.cpu().detach().numpy()
title_logits = title_logits.cpu().detach().numpy()
frame_logits = frame_logits.cpu().detach().numpy()
each_row.append(b1b2_logits)
title_each_row.append(title_logits)
frame_each_row.append(frame_logits)
# logger.info("b1b2_logits:{}".format(b1b2_logits.shape))
# logger.info("frame_logits:{}".format(frame_logits.shape))
each_row = np.concatenate(tuple(each_row), axis=-1)
# logger.info("each_row:{}".format(each_row.shape))
title_each_row = np.concatenate(tuple(title_each_row), axis=-1)
# frame_each_row = np.concatenate(tuple(frame_each_row), axis=-1)
frame_each_row = np.concatenate(tuple(frame_each_row), axis=1)
# logger.info("frame_each_row:{}".format(frame_each_row.shape))
# sim_matrix.append(preprocessing.scale(each_row, axis=1))
sim_matrix.append(each_row)
sim_matrix_title.append(title_each_row)
sim_matrix_frame.append(frame_each_row)
# logger.info("sim_matrix:{}".format(sim_matrix))
return sim_matrix, sim_matrix_title, sim_matrix_frame
def eval_epoch(args, model, test_dataloader, device, n_gpu):
torch.cuda.empty_cache()
if hasattr(model, 'module'):
model = model.module.to(device)
else:
model = model.to(device)
model.eval()
logger.info("args.task:{}".format(args.task))
# if multi_sentence_ == True: compute the similarity with multi-sentences retrieval
multi_sentence_ = False
cut_off_points_, sentence_num_, video_num_ = [], -1, -1
if hasattr(test_dataloader.dataset, 'multi_sentence_per_video') \
and test_dataloader.dataset.multi_sentence_per_video:
multi_sentence_ = True
cut_off_points_ = test_dataloader.dataset.cut_off_points # used to tag the label when calculate the metric
sentence_num_ = test_dataloader.dataset.sentence_num # used to cut the sentence representation
video_num_ = test_dataloader.dataset.video_num # used to cut the video representation
cut_off_points_ = [itm - 1 for itm in cut_off_points_]
logger.info("multi_sentence_:{}".format(multi_sentence_))
with torch.no_grad():
batch_query_output_list, batch_visual_output_list = [], []
batch_title_output_list = []
batch_frame_output_list = []
total_video_num = 0
# ----------------------------
# 1. cache the features
# ----------------------------
for bid, batch in enumerate(test_dataloader):
batch = tuple(t.to(device) for t in batch)
if args.task == "retrieval_VT":
query_ids, query_mask, video, video_frame, title_ids, title_mask = batch
elif args.task == "retrieval":
query_ids, query_mask, video, video_frame = batch
else:
raise ValueError("wrong task type:{}".format(args.task))
print("bid:{}/{}".format(bid, len(test_dataloader)), end="\r")
if multi_sentence_:
# multi-sentences retrieval means: one frame clip has two or more descriptions.
b, *_t = video.shape
# logger.info("query_ids.shape:{}".format(query_ids.shape))
# logger.info("video.shape:{}".format(video.shape))
query_output = model.text_encoder(query_ids, query_mask)
batch_query_output_list.append(query_output)
title_output = torch.zeros_like(query_output)
batch_title_output_list.append(title_output)
s_, e_ = total_video_num, total_video_num + b
filter_inds = [itm - s_ for itm in cut_off_points_ if s_ <= itm < e_]
if len(filter_inds) > 0:
video = video[filter_inds, ...]
visual_output, frame_output = model.visual_encoder(video, video_frame)
# frame_output = torch.mean(frame_output, dim=1)
batch_visual_output_list.append(visual_output)
batch_frame_output_list.append(frame_output)
total_video_num += b
else:
query_output = model.text_encoder(query_ids, query_mask)
visual_output, frame_output = model.visual_encoder(video, video_frame)
# frame_output = torch.mean(frame_output, dim=1)
if args.task == "retrieval_VT":
title_output = model.text_encoder(title_ids, title_mask)
logger.info("title_output.shape:{}".format(title_output.shape))
elif args.task == "retrieval":
title_output = torch.zeros_like(query_output)
else:
raise ValueError("wrong task type:{}".format(args.task))
# logger.info("query_output.shape:{}".format(query_output.shape))
# logger.info("weight_VTM:{},weight_FTM:{},exp:{}".format(model.weight_VTM, model.weight_FTM,
# model.text_encoder.logit_scale.exp()))
logger.info("visual_output.shape:{}".format(visual_output.shape))
logger.info("frame_output.shape:{}".format(frame_output.shape))
batch_query_output_list.append(query_output)
batch_visual_output_list.append(visual_output)
batch_title_output_list.append(title_output)
batch_frame_output_list.append(frame_output)
# ----------------------------------
# 2. calculate the similarity
# ----------------------------------
logger.info("n_gpu:{}".format(n_gpu))
# logger.info("model.weight_sum:{}".format(model.weight_sum))
if n_gpu > 1:
device_ids = list(range(n_gpu))
batch_t_output_splits = []
batch_v_output_splits = []
batch_title_output_splits = []
batch_frame_output_splits = []
bacth_len = len(batch_query_output_list)
split_len = (bacth_len + n_gpu - 1) // n_gpu
for dev_id in device_ids:
s_, e_ = dev_id * split_len, (dev_id + 1) * split_len
if dev_id == 0:
batch_t_output_splits.append(batch_query_output_list[s_:e_])
batch_v_output_splits.append(batch_visual_output_list)
batch_title_output_splits.append(batch_title_output_list)
batch_frame_output_splits.append(batch_frame_output_list)
else:
devc = torch.device('cuda:{}'.format(str(dev_id)))
devc_batch_list = [b.to(devc) for b in batch_query_output_list[s_:e_]]
batch_t_output_splits.append(devc_batch_list)
devc_batch_list = [b.to(devc) for b in batch_visual_output_list]
batch_v_output_splits.append(devc_batch_list)
devc_batch_list = [b.to(devc) for b in batch_title_output_list]
batch_title_output_splits.append(devc_batch_list)
devc_batch_list = [b.to(devc) for b in batch_frame_output_list]
batch_frame_output_splits.append(devc_batch_list)
parameters_tuple_list = [(batch_t_output_splits[dev_id], batch_v_output_splits[dev_id],
batch_title_output_splits[dev_id], batch_frame_output_splits[dev_id]) for dev_id in device_ids]
parallel_outputs_tuple = parallel_apply(_run_on_single_gpu, model, parameters_tuple_list, device_ids)
sim_matrix = []
sim_matrix_title = []
sim_matrix_frame = []
for idx in range(len(parallel_outputs_tuple)):
parallel_outputs, parallel_outputs_title, parallel_outputs_frame = parallel_outputs_tuple[idx]
sim_matrix += parallel_outputs
sim_matrix_title += parallel_outputs_title
sim_matrix_frame += parallel_outputs_frame
sim_matrix = np.concatenate(tuple(sim_matrix), axis=0)
sim_matrix_title = np.concatenate(tuple(sim_matrix_title), axis=0)
sim_matrix_frame = np.concatenate(tuple(sim_matrix_frame), axis=0)
else:
sim_matrix_tuple = _run_on_single_gpu(model, batch_query_output_list, batch_visual_output_list,
batch_title_output_list, batch_frame_output_list)
sim_matrix, sim_matrix_title, sim_matrix_frame = sim_matrix_tuple
sim_matrix = np.concatenate(tuple(sim_matrix), axis=0)
sim_matrix_title = np.concatenate(tuple(sim_matrix_title), axis=0)
sim_matrix_frame = np.concatenate(tuple(sim_matrix_frame), axis=0)
batch_visual_output_list = torch.cat(batch_visual_output_list, dim=0)
batch_frame_output_list = torch.cat(batch_frame_output_list, dim=0)
batch_visual_output_list = batch_visual_output_list.cpu().detach().numpy()
batch_frame_output_list = batch_frame_output_list.cpu().detach().numpy()
# np.save("/ai/swxdisk/data/vatex/features/Chinese_batch_visual_output_list", batch_visual_output_list)
# np.save("/ai/swxdisk/data/vatex/features/Chinese_batch_frame_output_list", batch_frame_output_list)
np.save("/ai/swxdisk/data/vatex/features/English_batch_visual_output_list", batch_visual_output_list)
np.save("/ai/swxdisk/data/vatex/features/English_batch_frame_output_list", batch_frame_output_list)
# logger.info("sim_matrix:{}".format(sim_matrix.shape))
# logger.info("sim_matrix_frame:{}".format(sim_matrix_frame.shape))
# np.save("/ai/swxdisk/data/msrvtt/visualize/sim_matrix", sim_matrix)
# np.save("/ai/swxdisk/data/msrvtt/visualize/sim_matrix_frame_top2", sim_matrix_frame)
# sim_matrix_frame = np.topk(sim_matrix_frame, k=model.top_frames, dim=2)[0]
# sim_matrix_frame = np.mean(sim_matrix_frame, dim=2)
if args.use_frame_fea:
sim_matrix += sim_matrix_frame
if args.task == "retrieval_VT":
# logger.info("sim_matrix_title:{}".format(sim_matrix_title))
weight_title = model.weight_title
sim_matrix += weight_title * sim_matrix_title
# sim_matrix = weight_title * sim_matrix_title
logger.info("sim matrix size: {}".format(np.array(sim_matrix).shape))
# sim_matrix = get_dual_matrix(sim_matrix)
tv_metrics = logging_rank(sim_matrix, multi_sentence_, cut_off_points_, logger)
return tv_metrics
def main():
global logger
args = get_args()
args = set_seed_logger(args)
device, n_gpu = init_device(args, args.local_rank)
# get text pretrained path
pretrained_text = "hfl/chinese-roberta-wwm-ext"
args.pretrained_text = pretrained_text
if args.language == "chinese":
tokenizer = BertTokenizer.from_pretrained(pretrained_text)
else:
tokenizer = ClipTokenizer()
model = init_model(args, device, n_gpu, args.local_rank)
## ####################################
# freeze testing
## ####################################
'''
assert args.freeze_layer_num <= 12 and args.freeze_layer_num >= -1
if hasattr(model, "visual_encoder") and args.freeze_layer_num > -1:
for name, param in model.visual_encoder.named_parameters():
# top layers always need to train
if name.find("ln_final.") == 0 or name.find("text_projection") == 0 or name.find("logit_scale") == 0 \
or name.find("visual.ln_post.") == 0 or name.find("visual.proj") == 0:
continue # need to train
elif name.find("visual.transformer.resblocks.") == 0 or name.find("transformer.resblocks.") == 0:
layer_num = int(name.split(".resblocks.")[1].split(".")[0])
if layer_num >= args.freeze_layer_num:
continue # need to train
if args.linear_patch == "3d" and name.find("conv2."):
continue
else:
# paramenters which < freeze_layer_num will be freezed
param.requires_grad = False
'''
assert args.dataset in DATALOADER_DICT
test_dataloader, test_length = DATALOADER_DICT[args.dataset]["test"](args, tokenizer)
if args.local_rank == 0:
logger.info("***** Running test *****")
logger.info(" Num examples = %d", test_length)
logger.info(" Batch size = %d", args.batch_size_val)
logger.info(" Num steps = %d", len(test_dataloader))
if args.do_train:
train_dataloader, train_length, train_sampler = DATALOADER_DICT[args.dataset]["train"](args, tokenizer)
num_train_optimization_steps = (int(len(train_dataloader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.epochs
# logger.info("train_dataloader len = {}".format(len(train_dataloader)))
# logger.info("gradient_accumulation_steps = {}".format(args.gradient_accumulation_steps))
coef_lr = args.coef_lr
optimizer, scheduler, model = prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu,
args.local_rank, coef_lr=coef_lr)
if args.local_rank == 0:
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_length)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps * args.gradient_accumulation_steps)
best_score = 0.00001
best_output_model_file = "None"
global_step = 0
if args.enable_amp:
scaler = GradScaler()
else:
scaler = None
for epoch in range(args.epochs):
train_sampler.set_epoch(epoch)
tr_loss, global_step = train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer,
scheduler, scaler, global_step, local_rank=args.local_rank)
if args.local_rank == 0:
logger.info("Epoch %d/%s Finished, Train Loss: %f", epoch + 1, args.epochs, tr_loss)
# for name, param in model.named_parameters():
# args.writer.add_histogram(name, param.clone().cpu().data.numpy(), epoch)
# writer.add_histogram(name + '/grad', param.requires_grad_().clone().cpu().data.numpy(), epoch)
if epoch % 1 == 0:
## Uncomment if want to save checkpoint
output_model_file = save_model(epoch, args, model, type_name="")
# if epoch == 100:
metrics = eval_epoch(args, model, test_dataloader, device, n_gpu)
if args.logdir:
args.writer.add_scalars('metrics', {'R1': metrics["R1"], 'R5': metrics["R5"],
'R10': metrics["R10"]}, global_step=epoch)
if best_score < metrics["R1"]:
best_score = metrics["R1"]
best_output_model_file = output_model_file
logger.info("The best model is: {}, the R1 is: {:.4f}".format(best_output_model_file, best_score))
elif args.do_eval:
if args.local_rank == 0:
eval_epoch(args, model, test_dataloader, device, n_gpu)
elif args.do_params:
logger.info("do_params begin!")
# total = sum([param.nelement() for param in model.parameters()])
total = sum(p.numel() for p in model.parameters())
logger.info("Number of parameter: %.2fM" % (total / 1e6))
for bid, batch in enumerate(test_dataloader):
batch = tuple(t.to(device) for t in batch)
query_ids, query_mask, pos_video_data, pos_title_ids, pos_title_mask, = batch
flops, params = profile(model, (query_ids, query_mask, pos_video_data, pos_title_ids, pos_title_mask,))
print('flops: %.2f G, params: %.2f M' % (flops / 1e9, params / 1e6))
break
if args.local_rank == 0 and args.logdir:
args.writer.close()
if __name__ == "__main__":
main()
|