File size: 11,646 Bytes
29c5a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

import logging
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import math
from modules.until_config import PretrainedConfig

logger = logging.getLogger(__name__)


def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))

def swish(x):
    return x * torch.sigmoid(x)

def get_dual_matrix(sim_matrix):
    if torch.is_tensor(sim_matrix):
        pass
    else:
        sim_matrix = torch.tensor(sim_matrix)
    temp = 1
    # sim_matrix = sim_matrix * F.softmax(sim_matrix / temp, dim=0) * len(sim_matrix)
    alpha = F.softmax(sim_matrix / temp, dim=0)
    beta = F.softmax(sim_matrix / temp, dim=1)
    sim_matrix = sim_matrix * alpha * beta
    return sim_matrix


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}

class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """Construct a layernorm module in the TF style (epsilon inside the square root).
        """
        super(LayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x + self.bias

class PreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedModel, self).__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            if 'beta' in dir(module) and 'gamma' in dir(module):
                module.beta.data.zero_()
                module.gamma.data.fill_(1.0)
            else:
                module.bias.data.zero_()
                module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    def resize_token_embeddings(self, new_num_tokens=None):
        raise NotImplementedError

    @classmethod
    def init_preweight(cls, model, state_dict, prefix=None, task_config=None):
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        if prefix is not None:
            old_keys = []
            new_keys = []
            for key in state_dict.keys():
                old_keys.append(key)
                new_keys.append(prefix + key)
            for old_key, new_key in zip(old_keys, new_keys):
                state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

        load(model, prefix='')

        if prefix is None and (task_config is None or task_config.local_rank == 0):
            logger.info("-" * 20)
            if len(missing_keys) > 0:
                logger.info("Weights of {} not initialized from pretrained model: {}"
                            .format(model.__class__.__name__, "\n   " + "\n   ".join(missing_keys)))
            if len(unexpected_keys) > 0:
                logger.info("Weights from pretrained model not used in {}: {}"
                            .format(model.__class__.__name__, "\n   " + "\n   ".join(unexpected_keys)))
            if len(error_msgs) > 0:
                logger.error("Weights from pretrained model cause errors in {}: {}"
                             .format(model.__class__.__name__, "\n   " + "\n   ".join(error_msgs)))

        return model

    @property
    def dtype(self):
        """
        :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        try:
            return next(self.parameters()).dtype
        except StopIteration:
            # For nn.DataParallel compatibility in PyTorch 1.5
            def find_tensor_attributes(module: nn.Module):
                tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
                return tuples

            gen = self._named_members(get_members_fn=find_tensor_attributes)
            first_tuple = next(gen)
            return first_tuple[1].dtype

    @classmethod
    def from_pretrained(cls, config, state_dict=None,  *inputs, **kwargs):
        """
        Instantiate a PreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None:
            return model
        model = cls.init_preweight(model, state_dict)

        return model

##################################
###### LOSS FUNCTION #############
##################################
class CrossEn(nn.Module):
    def __init__(self,):
        super(CrossEn, self).__init__()

    def forward(self, sim_matrix):
        logpt = F.log_softmax(sim_matrix, dim=-1)
        logpt = torch.diag(logpt)
        nce_loss = -logpt
        sim_loss = nce_loss.mean()
        return sim_loss

class Dual_CrossEn(nn.Module):
    def __init__(self,):
        super(Dual_CrossEn, self).__init__()

    def forward(self, sim_matrix):
        sim_matrix = get_dual_matrix(sim_matrix)
        logpt = F.log_softmax(sim_matrix, dim=-1)
        logpt = torch.diag(logpt)
        nce_loss = -logpt
        sim_loss = nce_loss.mean()
        return sim_loss

class MILNCELoss(nn.Module):
    def __init__(self, batch_size=1, n_pair=1,):
        super(MILNCELoss, self).__init__()
        self.batch_size = batch_size
        self.n_pair = n_pair
        torch_v = float(".".join(torch.__version__.split(".")[:2]))
        self.bool_dtype = torch.bool if torch_v >= 1.3 else torch.uint8

    def forward(self, sim_matrix):
        mm_mask = np.eye(self.batch_size)
        mm_mask = np.kron(mm_mask, np.ones((self.n_pair, self.n_pair)))
        mm_mask = torch.tensor(mm_mask).float().to(sim_matrix.device)

        from_text_matrix = sim_matrix + mm_mask * -1e12
        from_video_matrix = sim_matrix.transpose(1, 0)

        new_sim_matrix = torch.cat([from_video_matrix, from_text_matrix], dim=-1)
        logpt = F.log_softmax(new_sim_matrix, dim=-1)

        mm_mask_logpt = torch.cat([mm_mask, torch.zeros_like(mm_mask)], dim=-1)
        masked_logpt = logpt + (torch.ones_like(mm_mask_logpt) - mm_mask_logpt) * -1e12

        new_logpt = -torch.logsumexp(masked_logpt, dim=-1)

        logpt_choice = torch.zeros_like(new_logpt)
        mark_ind = torch.arange(self.batch_size).to(sim_matrix.device) * self.n_pair + (self.n_pair//2)
        logpt_choice[mark_ind] = 1
        sim_loss = new_logpt.masked_select(logpt_choice.to(dtype=self.bool_dtype)).mean()
        return sim_loss

class MaxMarginRankingLoss(nn.Module):
    def __init__(self,
                 margin=1.0,
                 negative_weighting=False,
                 batch_size=1,
                 n_pair=1,
                 hard_negative_rate=0.5,
        ):
        super(MaxMarginRankingLoss, self).__init__()
        self.margin = margin
        self.n_pair = n_pair
        self.batch_size = batch_size
        easy_negative_rate = 1 - hard_negative_rate
        self.easy_negative_rate = easy_negative_rate
        self.negative_weighting = negative_weighting
        if n_pair > 1 and batch_size > 1:
            alpha = easy_negative_rate / ((batch_size - 1) * (1 - easy_negative_rate))
            mm_mask = (1 - alpha) * np.eye(self.batch_size) + alpha
            mm_mask = np.kron(mm_mask, np.ones((n_pair, n_pair)))
            mm_mask = torch.tensor(mm_mask) * (batch_size * (1 - easy_negative_rate))
            self.mm_mask = mm_mask.float()

    def forward(self, x):
        d = torch.diag(x)
        max_margin = F.relu(self.margin + x - d.view(-1, 1)) + \
                     F.relu(self.margin + x - d.view(1, -1))
        if self.negative_weighting and self.n_pair > 1 and self.batch_size > 1:
            max_margin = max_margin * self.mm_mask.to(max_margin.device)
        return max_margin.mean()

class AllGather(torch.autograd.Function):
    """An autograd function that performs allgather on a tensor."""

    @staticmethod
    def forward(ctx, tensor, args):
        output = [torch.empty_like(tensor) for _ in range(args.world_size)]
        torch.distributed.all_gather(output, tensor)
        ctx.rank = args.rank
        ctx.batch_size = tensor.shape[0]
        return torch.cat(output, dim=0)

    @staticmethod
    def backward(ctx, grad_output):
        return (
            grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)],
            None,
        )