File size: 25,989 Bytes
29c5a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import torch
from torch import nn
import numpy as np
import torch.nn.functional as F
from transformers import AutoConfig, AutoModel, BertTokenizer
from modules.tokenization_clip import SimpleTokenizer as ClipTokenizer
from modules.until_module import PreTrainedModel, AllGather, CrossEn, Dual_CrossEn
from modules.module_cross import TextEncoder, VisualEncoder, CrossConfig, BertLMPredictionHead

logger = logging.getLogger(__name__)
allgather = AllGather.apply


class CLIP4ClipPreTrainedModel(PreTrainedModel, nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """

    def __init__(self, cross_config, *inputs, **kwargs):
        super(CLIP4ClipPreTrainedModel, self).__init__(cross_config)
        self.cross_config = cross_config

    @classmethod
    def from_pretrained(cls, cross_model_name, state_dict=None, cache_dir=None, type_vocab_size=2, *inputs, **kwargs):

        task_config = None
        if "task_config" in kwargs.keys():
            task_config = kwargs["task_config"]
            if not hasattr(task_config, "local_rank"):
                task_config.__dict__["local_rank"] = 0
            elif task_config.local_rank == -1:
                task_config.local_rank = 0

        cross_config, _ = CrossConfig.get_config(cross_model_name, cache_dir, type_vocab_size, state_dict=None,
                                                 task_config=task_config)

        model = cls(cross_config, *inputs, **kwargs)

        if state_dict is not None:
            model = cls.init_preweight(model, state_dict, task_config=task_config)

        return model


def show_log(task_config, info):
    if task_config is None or task_config.local_rank == 0:
        logger.warning(info)


def update_attr(target_name, target_config, target_attr_name, source_config, source_attr_name, default_value=None):
    if hasattr(source_config, source_attr_name):
        if default_value is None or getattr(source_config, source_attr_name) != default_value:
            setattr(target_config, target_attr_name, getattr(source_config, source_attr_name))
            show_log(source_config, "Set {}.{}: {}.".format(target_name,
                                                            target_attr_name, getattr(target_config, target_attr_name)))
    return target_config


def check_attr(target_name, task_config):
    return hasattr(task_config, target_name) and task_config.__dict__[target_name]


class BirdPreTrainedModel(CLIP4ClipPreTrainedModel):
    def __init__(self, cross_config, task_config):
        super(BirdPreTrainedModel, self).__init__(cross_config)
        self.task_config = task_config
        self.rank = task_config.local_rank
        self.mlm_probability = cross_config.mlm_probability
        self.top_frames = task_config.top_frames
        # self.weight_sum = torch.nn.Parameter(torch.tensor([0.5], dtype=torch.float32), requires_grad=True)
        self.weight_FAM = cross_config.weight_FAM
        self.weight_VTM = cross_config.weight_VTM
        self.weight_FTM = cross_config.weight_FTM
        self.weight_MLM = cross_config.weight_MLM
        self.contrast_momentum = task_config.contrast_momentum
        self.contrast_temperature = task_config.contrast_temperature
        self.contrast_num_negative = task_config.contrast_num_negative
        ################## chinese text Encoder
        if self.task_config.language == "chinese":
            self.tokenizer = BertTokenizer.from_pretrained(self.task_config.pretrained_text)
        else:
            self.tokenizer = ClipTokenizer()
        if self.rank == 0:
            logger.info("voacb_size:{}".format(self.tokenizer.vocab_size))
        t_config = AutoConfig.from_pretrained(self.task_config.pretrained_text)
        self.text_encoder = TextEncoder(self.task_config, cross_config)
        self.text_encoder_k = TextEncoder(self.task_config, cross_config)
        self.t_projector = MLP(num_layers=cross_config.proj_num_layers)
        self.t_projector_k = MLP(num_layers=cross_config.proj_num_layers)
        nn.SyncBatchNorm.convert_sync_batchnorm(self.t_projector)
        nn.SyncBatchNorm.convert_sync_batchnorm(self.t_projector_k)
        # for MLM
        t_config.hidden_size = cross_config.temporal_hidden_size
        t_config.vocab_size = self.tokenizer.vocab_size
        self.cls = BertLMPredictionHead(t_config)
        ################## visual_encoder
        self.visual_encoder = VisualEncoder(self.task_config, cross_config)
        self.visual_encoder_k = VisualEncoder(self.task_config, cross_config)
        self.v_projector = MLP(num_layers=cross_config.proj_num_layers)
        self.v_projector_k = MLP(num_layers=cross_config.proj_num_layers)
        self.v_predictor = MLP(num_layers=cross_config.pred_num_layers)
        nn.SyncBatchNorm.convert_sync_batchnorm(self.v_projector)
        nn.SyncBatchNorm.convert_sync_batchnorm(self.v_projector_k)
        nn.SyncBatchNorm.convert_sync_batchnorm(self.v_predictor)
        ################# momemtun mdoel pairs
        self.model_pairs = [[self.visual_encoder, self.visual_encoder_k],
                            [self.text_encoder, self.text_encoder_k],
                            [self.v_projector, self.v_projector_k],
                            [self.t_projector, self.t_projector_k],
                            ]
        self.copy_params()
        ################## create queue
        self.register_buffer("queue_v_cross_ng", torch.randn(cross_config.temporal_hidden_size, self.contrast_num_negative))
        self.register_buffer("queue_frame_proj_ng", torch.randn(cross_config.temporal_hidden_size,
                                                                self.contrast_num_negative * self.task_config.max_frames))
        self.register_buffer("queue_frame_cross_ng", torch.randn(cross_config.temporal_hidden_size,
                                                                 self.contrast_num_negative * self.task_config.max_frames))
        self.register_buffer("queue_title_cross_ng", torch.randn(cross_config.temporal_hidden_size, self.contrast_num_negative))
        self.register_buffer("queue_tag_cross_ng", torch.randn(cross_config.temporal_hidden_size, self.contrast_num_negative))
        self.queue_v_cross_ng = F.normalize(self.queue_v_cross_ng, dim=0)
        self.queue_frame_proj_ng = F.normalize(self.queue_frame_proj_ng, dim=0)
        self.queue_frame_cross_ng = F.normalize(self.queue_frame_cross_ng, dim=0)
        self.queue_title_cross_ng = F.normalize(self.queue_title_cross_ng, dim=0)
        self.queue_tag_cross_ng = F.normalize(self.queue_tag_cross_ng, dim=0)

        self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))

        ################## loss function
        self.loss_fct = CrossEn()
        self.loss_fct_dual = Dual_CrossEn()


        # self.apply(self.init_weights)

    def get_mlm_loss(self, input_ids, input_mask):
        to_mask_input_ids = input_ids.clone()
        input_labels = to_mask_input_ids.clone()
        input_probability_matrix = torch.full(input_labels.shape, self.mlm_probability)
        masked_input_ids, input_labels = self.mask(to_mask_input_ids, self.tokenizer.vocab_size,
                                                   input_mask.device, targets=input_labels,
                                                   probability_matrix=input_probability_matrix)
        masked_input_output = self.text_encoder(masked_input_ids, input_mask, return_hidden=True)
        mlm_input_loss = self.calculate_mlm_loss(masked_input_output, input_labels)
        return mlm_input_loss

    def calculate_mlm_loss(self, sequence_output_mlm, labels):

        mlm_scores = self.cls(sequence_output_mlm)
        # logger.info("sequence_output_mlm.shape:{}".format(sequence_output_mlm.shape))
        # logger.info("mlm_scores.shape:{}".format(mlm_scores.shape))
        # logger.info("labels.shape:{}".format(labels.shape))
        mlm_loss = F.cross_entropy(mlm_scores.view(-1, self.tokenizer.vocab_size),
                                   labels.view(-1), ignore_index=-100)
        return mlm_loss

    def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
        if masked_indices is None:
            masked_indices = torch.bernoulli(probability_matrix).bool()

        masked_indices[input_ids == self.tokenizer.pad_token_id] = False
        masked_indices[input_ids == self.tokenizer.cls_token_id] = False
        # logger.info("masked_indices:{}".format(masked_indices))
        # logger.info("masked_indices.shape:{}".format(masked_indices.shape))
        if targets is not None:
            targets[~masked_indices] = -100  # We only compute loss on masked tokens

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
        input_ids[indices_replaced] = self.tokenizer.mask_token_id

        # 10% of the time, we replace masked input tokens with random word
        indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
        random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
        input_ids[indices_random] = random_words[indices_random]
        # The rest of the time (10% of the time) we keep the masked input tokens unchanged

        if targets is not None:
            return input_ids, targets
        else:
            return input_ids

    def loose_similarity(self, sequence_output, visual_output):
        sequence_output, visual_output = sequence_output.contiguous(), visual_output.contiguous()

        visual_output = visual_output.squeeze()
        visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)

        sequence_output = sequence_output.squeeze()
        sequence_output = sequence_output / sequence_output.norm(dim=-1, keepdim=True)

        logit_scale = self.text_encoder.logit_scale.exp()
        logit_scale.data = torch.clamp(logit_scale.data, max=100)
        # if self.rank == 0:
        #     logger.info("logit_scale:{},dtype:{}".format(logit_scale, logit_scale.dtype))
        #     logger.info("sequence_output.shape:{}".format(sequence_output.shape))
        #     logger.info("visual_output.shape:{}".format(visual_output.shape))
        if len(visual_output.shape) == 2:
            retrieve_logits = logit_scale * torch.matmul(sequence_output, visual_output.t())
        else:
            visual_temp = visual_output.permute(0, 2, 1)
            retrieve_logits = logit_scale * torch.matmul(sequence_output, visual_temp)
            if len(retrieve_logits.shape) == 3:
                retrieve_logits = retrieve_logits.permute(1, 0, 2)

        return retrieve_logits

    @torch.no_grad()
    def copy_params(self):
        for model_pair in self.model_pairs:
            for param, param_k in zip(model_pair[0].parameters(), model_pair[1].parameters()):
                param_k.data.copy_(param.data)  # initialize
                param_k.requires_grad = False  # not update by gradient

    @torch.no_grad()
    def _momentum_update(self):
        for model_pair in self.model_pairs:
            for param, param_k in zip(model_pair[0].parameters(), model_pair[1].parameters()):
                param_k.data = param_k.data * self.contrast_momentum + param.data * (1. - self.contrast_momentum)

    @torch.no_grad()
    def _dequeue_and_enqueue(self, v_fea_k, tag_fea_k, title_fea_k, frame_fea_k, frame_proj_k):

        # gather keys before updating queue
        # [bs,hidden]
        v_fea_k = F.normalize(v_fea_k, dim=1)
        tag_fea_k = F.normalize(tag_fea_k, dim=1)
        title_fea_k = F.normalize(title_fea_k, dim=1)
        # [bs,frame,hidden]
        frame_fea_k = F.normalize(frame_fea_k, dim=2)
        frame_proj_k = F.normalize(frame_proj_k, dim=2)

        batch_size = v_fea_k.size(0)
        frame_num = frame_fea_k.size(1)
        frame_fea_k = frame_fea_k.view(-1, frame_fea_k.size(-1))
        frame_proj_k = frame_proj_k.view(-1, frame_proj_k.size(-1))

        ptr = int(self.queue_ptr)
        # if self.rank == 0:
        #     logger.info(
        #         "begin>>>>: ptr:{},batch_size:{},frame_num:{},queue_size:{}".format(ptr, batch_size, frame_num, self.contrast_num_negative))
        #     logger.info("v1_self_k.shape:{},tag_cross_k.shape:{},frame_proj_k.shape:{}".format(v_fea_k.shape, tag_fea_k.shape, frame_proj_k.shape))

        # replace the keys at ptr (dequeue and enqueue)
        self.queue_v_cross_ng[:, ptr:ptr + batch_size] = v_fea_k.T
        self.queue_tag_cross_ng[:, ptr:ptr + batch_size] = tag_fea_k.T
        self.queue_title_cross_ng[:, ptr:ptr + batch_size] = title_fea_k.T

        self.queue_frame_proj_ng[:, ptr * frame_num:(ptr + batch_size) * frame_num] = frame_proj_k.T
        self.queue_frame_cross_ng[:, ptr * frame_num:(ptr + batch_size) * frame_num] = frame_fea_k.T
        # move pointer
        ptr = (ptr + batch_size) % self.contrast_num_negative

        # if self.rank == 0:
        #     logger.info("end>>>>: ptr:{}".format(ptr))
        self.queue_ptr[0] = ptr

    def contrastive_loss(self, q, k, queue):

        q = q.squeeze()
        q = F.normalize(q, dim=1)
        k = k.squeeze()
        k = F.normalize(k, dim=1)

        bs = q.size(0)
        # logger.info("q.dtype:{},k.dtype:{}".format(q.dtype, k.dtype))
        # positive logits: Nx1
        # >>>>>>got error in apex:amp level=01!!!!!!!!!
        # l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
        l_pos = torch.matmul(q, k.T)
        l_pos = torch.diag(l_pos).reshape([bs, -1])
        # negative logits: NxK
        # l_neg = torch.einsum('nc,ck->nk', [q, queue.clone().detach()])
        l_neg = torch.matmul(q, queue.clone().detach())
        # logits: Nx(1+K)
        logits = torch.cat([l_pos, l_neg], dim=1)
        # if self.rank == 0:
        #     logger.info("logits.shape:{}".format(logits.shape))
        # apply temperature
        logits /= self.contrast_temperature

        # labels: positive key indicators
        labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()

        return F.cross_entropy(logits, labels)

    def frame_self_loss(self, frame_fea, frame_fea_k, queue_frame_ng):
        loss = 0.

        for i in range(frame_fea.size(1) - 1):
            frame_loss = self.contrastive_loss(frame_fea[:, i, :], frame_fea_k[:, i+1, :], queue_frame_ng) \
                        + self.contrastive_loss(frame_fea[:, i+1, :], frame_fea_k[:, i, :], queue_frame_ng)
            loss += frame_loss
        loss = loss / (frame_fea.size(1) - 1)
        return loss

    def frame_cross_loss(self, frame_fea, frame_fea_k, queue_frame_ng, text_fea, text_fea_k, queue_text_ng):
        loss = 0.
        for i in range(frame_fea.size(1)):
            frame_loss = self.contrastive_loss(text_fea, frame_fea_k[:, i, :], queue_frame_ng) + \
                         self.contrastive_loss(frame_fea[:, i, :], text_fea_k, queue_text_ng)
            loss += frame_loss
        loss = loss / frame_fea.size(1)
        return loss

    def forward(self, video_data, video_frame, tag_ids, tag_mask, title_ids, title_mask, global_step):
        tag_ids = tag_ids.view(-1, tag_ids.shape[-1])
        tag_mask = tag_mask.view(-1, tag_mask.shape[-1])
        title_ids = title_ids.view(-1, title_ids.shape[-1])
        title_mask = title_mask.view(-1, title_mask.shape[-1])
        # bs x frames x 3 x H x W
        video = torch.as_tensor(video_data)

        if self.rank == 0 and global_step % self.task_config.n_display == 0:
            logger.info("video1.shape:{}, dtype:{}, device:{}".format(video.shape, video.dtype, video.device))

        if self.training:
            # loss = 0.0
            v_fea, frame_fea = self.visual_encoder(video, video_frame)
            if self.task_config.dataset == "bird":
                tag_fea = self.text_encoder(tag_ids, tag_mask)
            title_fea = self.text_encoder(title_ids, title_mask)

            # for video self supervised learning
            # [bs,hidden_size]
            bs, frame, hidden = frame_fea.shape
            frame_fea = frame_fea.view(-1, hidden)
            frame_proj = self.v_projector(frame_fea)
            frame_pred = self.v_predictor(frame_proj)
            frame_fea = frame_fea.view(bs, frame, hidden)
            frame_proj = frame_proj.view(bs, frame, hidden)
            frame_pred = frame_pred.view(bs, frame, hidden)
            if self.rank == 0 and global_step % self.task_config.n_display == 0:
                logger.info("v_fea.shape:{},device:{}".format(v_fea.shape, v_fea.device))
                logger.info("frame_fea.shape:{},device:{}".format(frame_fea.shape, frame_fea.device))
                logger.info("frame_proj.shape:{},device:{}".format(frame_proj.shape, frame_proj.device))
                logger.info("title_fea.shape:{}".format(title_fea.shape))
                logger.info("queue_v_cross_ng.shape:{}".format(self.queue_v_cross_ng.shape))
            # compute key features
            with torch.no_grad():  # no gradient to keys
                self._momentum_update()  # update the key encoder

                tag_fea_k = self.text_encoder_k(tag_ids, tag_mask)
                title_fea_k = self.text_encoder_k(title_ids, title_mask)
                #
                v_fea_k, frame_fea_k = self.visual_encoder_k(video, video_frame)
                frame_fea_k = frame_fea_k.view(-1, hidden)
                frame_proj_k = self.v_projector_k(frame_fea_k)
                frame_fea_k = frame_fea_k.view(bs, frame, hidden)
                frame_proj_k = frame_proj_k.view(bs, frame, hidden)

            # compute loss
            if self.rank == 0 and global_step % self.task_config.n_display == 0:
                logger.info(
                    "dtype: v_fea:{},v_fea_k:{},title_fea:{}".format(v_fea.dtype, v_fea_k.dtype, title_fea.dtype))
            # single video modality: video queue loss
            loss_FAM = self.frame_self_loss(frame_pred, frame_proj_k, self.queue_frame_proj_ng)
            # cross modality: cross queue loss
            v_title_queue_loss = self.contrastive_loss(v_fea, title_fea_k, self.queue_title_cross_ng) \
                                 + self.contrastive_loss(title_fea, v_fea_k, self.queue_v_cross_ng)
            if self.task_config.dataset == "bird":
                v_tag_queue_loss = self.contrastive_loss(v_fea, tag_fea_k, self.queue_tag_cross_ng) \
                                   + self.contrastive_loss(tag_fea, v_fea_k, self.queue_v_cross_ng)
                loss_VTM = (v_tag_queue_loss + v_title_queue_loss) / 2
            else:
                loss_VTM = v_title_queue_loss

            loss_FTM = 0.
            if self.task_config.use_frame_fea:
                frame_title_loss = self.frame_cross_loss(frame_fea, frame_fea_k, self.queue_frame_cross_ng, title_fea,
                                                         title_fea_k, self.queue_title_cross_ng)
                if self.task_config.dataset == "bird":
                    frame_tag_loss = self.frame_cross_loss(frame_fea, frame_fea_k, self.queue_frame_cross_ng, tag_fea,
                                                           tag_fea_k, self.queue_tag_cross_ng)
                    loss_FTM += (frame_tag_loss + frame_title_loss) / 2
                else:
                    loss_FTM = frame_title_loss

            # single text modality: text queue loss
            # t_queue_loss = self.contrastive_loss(title_fea, tag_fea_k, self.queue_tag_cross_ng) \
            #                + self.contrastive_loss(tag_fea, title_fea_k, self.queue_v_cross_ng)

            # dequeue_and_enqueue
            self._dequeue_and_enqueue(v_fea_k, tag_fea_k, title_fea_k, frame_fea_k, frame_proj_k)

            # mlm loss

            mlm_title_loss = self.get_mlm_loss(title_ids, title_mask)
            if self.task_config.dataset == "bird":
                mlm_tag_loss = self.get_mlm_loss(tag_ids, tag_mask)
                loss_MLM = (mlm_tag_loss + mlm_title_loss) / 2
            else:
                loss_MLM = mlm_title_loss

            # total loss
            loss = self.weight_FAM * loss_FAM + self.weight_VTM * loss_VTM + self.weight_FTM * loss_FTM + self.weight_MLM * loss_MLM
            if self.rank == 0:
                if global_step % self.task_config.n_display == 0:
                    logger.info("loss:{},loss_FAM:{},loss_VTM:{},loss_FTM:{},loss_MLM:{}"
                                "".format(loss, loss_FAM, loss_VTM, loss_FTM, loss_MLM))
                if self.task_config.logdir:
                    loss_item = {"loss": float(loss), "loss_FAM": float(loss_FAM), "loss_VTM": float(loss_VTM),
                                 "loss_FTM": float(loss_FTM), "loss_MLM": float(loss_MLM)}
                    self.task_config.writer.add_scalars('loss', loss_item, global_step=global_step)
                    # self.task_config.writer.add_scalar('loss', video_cross_loss, global_step=global_step)
            return loss
        else:
            return None


class BirdModel(BirdPreTrainedModel):
    def __init__(self, cross_config, task_config):
        super(BirdPreTrainedModel, self).__init__(cross_config)
        self.task_config = task_config
        self.rank = task_config.local_rank
        # self.weight_sim = torch.nn.Parameter(torch.tensor([0.9], dtype=torch.float32), requires_grad=True)
        self.weight_VTM_finetune = cross_config.weight_VTM_finetune
        self.weight_FTM_finetune = cross_config.weight_FTM_finetune
        self.top_frames = task_config.top_frames
        ################## text Encoder
        self.text_encoder = TextEncoder(self.task_config, cross_config)
        ################## visual_encoder
        self.visual_encoder = VisualEncoder(self.task_config, cross_config)
        ################## loss function
        self.loss_fct = CrossEn()
        self.loss_fct_dual = Dual_CrossEn()

    def frame_loss(self, query_output, frame_output):
        frame_num = frame_output.size(1)
        loss = 0.
        for i in range(frame_num):
            frame_single = frame_output[:, i, :].squeeze()
            sim_matrix = self.loose_similarity(query_output, frame_single)
            sim_loss = self.loss_fct(sim_matrix) + self.loss_fct(sim_matrix.T)
            loss += sim_loss / frame_num
        # logger.info("frame_output.shape:{},dtype:{}".format(frame_output.shape, frame_output.dtype))
        # logger.info("query_output.shape:{},dtype:{}".format(query_output.shape, frame_output.dtype))
        # sim_matrix = self.loose_similarity(query_output, frame_output)
        # sim_matrix = torch.topk(sim_matrix, k=self.top_frames, dim=2)[0]
        # sim_matrix = torch.mean(sim_matrix, dim=2)
        # sim_loss = self.loss_fct(sim_matrix) + self.loss_fct(sim_matrix.T)
        # loss += sim_loss
        return loss

    def forward(self, query_ids, query_mask, video_data, video_frame, idx, global_step):
        query_ids = query_ids.view(-1, query_ids.shape[-1])
        query_mask = query_mask.view(-1, query_mask.shape[-1])
        # T x 3 x H x W
        video = torch.as_tensor(video_data)
        # if self.rank == 0:
        #     logger.info("video.shape:{}, dtype:{}".format(video.shape, video.dtype))
        if self.training:
            loss = 0.0
            query_output = self.text_encoder(query_ids, query_mask)
            visual_output, frame_output = self.visual_encoder(video, video_frame)
            # if self.rank == 0:
            #     logger.info("query_output.shape:{},dtype:{}".format(query_output.shape, query_output.dtype))
            #     logger.info("visual_output.shape:{},dtype:{}".format(visual_output.shape, visual_output.dtype))
            #     logger.info("frame_output.shape:{},dtype:{}".format(frame_output.shape, frame_output.dtype))

            # frame loss
            if self.task_config.use_frame_fea:
                frame_loss = self.frame_loss(query_output, frame_output)
                loss += self.weight_FTM_finetune * frame_loss
            # video loss
            sim_matrix = self.loose_similarity(query_output, visual_output)
            sim_loss = self.loss_fct(sim_matrix) + self.loss_fct(sim_matrix.T)
            loss += self.weight_VTM_finetune * sim_loss
            # loss += sim_loss

            if self.task_config.local_rank == 0:
                if global_step % self.task_config.n_display == 0:
                    logger.info(
                        "loss:{},frame_loss:{},sim_loss:{},type:{},sim_matrix.shape:{}".format(loss, loss - sim_loss,
                                                                                sim_loss, sim_loss.dtype, sim_matrix.shape))

                if self.task_config.logdir:
                    self.task_config.writer.add_scalar('loss', float(loss), global_step=global_step)
            return loss
        else:
            return None


class MLP(nn.Module):
    def __init__(self, in_dim=512, inner_dim=4096, out_dim=512, num_layers=2):
        super(MLP, self).__init__()

        # hidden layers
        linear_hidden = [nn.Identity()]
        for i in range(num_layers - 1):
            linear_hidden.append(nn.Linear(in_dim if i == 0 else inner_dim, inner_dim))
            linear_hidden.append(nn.BatchNorm1d(inner_dim))
            linear_hidden.append(nn.ReLU(inplace=True))
        self.linear_hidden = nn.Sequential(*linear_hidden)

        self.linear_out = nn.Linear(in_dim if num_layers == 1 else inner_dim,
                                    out_dim) if num_layers >= 1 else nn.Identity()

    def forward(self, x):
        x = self.linear_hidden(x)
        x = self.linear_out(x)

        return x