Spaces:
Runtime error
Runtime error
File size: 25,989 Bytes
29c5a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import torch
from torch import nn
import numpy as np
import torch.nn.functional as F
from transformers import AutoConfig, AutoModel, BertTokenizer
from modules.tokenization_clip import SimpleTokenizer as ClipTokenizer
from modules.until_module import PreTrainedModel, AllGather, CrossEn, Dual_CrossEn
from modules.module_cross import TextEncoder, VisualEncoder, CrossConfig, BertLMPredictionHead
logger = logging.getLogger(__name__)
allgather = AllGather.apply
class CLIP4ClipPreTrainedModel(PreTrainedModel, nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, cross_config, *inputs, **kwargs):
super(CLIP4ClipPreTrainedModel, self).__init__(cross_config)
self.cross_config = cross_config
@classmethod
def from_pretrained(cls, cross_model_name, state_dict=None, cache_dir=None, type_vocab_size=2, *inputs, **kwargs):
task_config = None
if "task_config" in kwargs.keys():
task_config = kwargs["task_config"]
if not hasattr(task_config, "local_rank"):
task_config.__dict__["local_rank"] = 0
elif task_config.local_rank == -1:
task_config.local_rank = 0
cross_config, _ = CrossConfig.get_config(cross_model_name, cache_dir, type_vocab_size, state_dict=None,
task_config=task_config)
model = cls(cross_config, *inputs, **kwargs)
if state_dict is not None:
model = cls.init_preweight(model, state_dict, task_config=task_config)
return model
def show_log(task_config, info):
if task_config is None or task_config.local_rank == 0:
logger.warning(info)
def update_attr(target_name, target_config, target_attr_name, source_config, source_attr_name, default_value=None):
if hasattr(source_config, source_attr_name):
if default_value is None or getattr(source_config, source_attr_name) != default_value:
setattr(target_config, target_attr_name, getattr(source_config, source_attr_name))
show_log(source_config, "Set {}.{}: {}.".format(target_name,
target_attr_name, getattr(target_config, target_attr_name)))
return target_config
def check_attr(target_name, task_config):
return hasattr(task_config, target_name) and task_config.__dict__[target_name]
class BirdPreTrainedModel(CLIP4ClipPreTrainedModel):
def __init__(self, cross_config, task_config):
super(BirdPreTrainedModel, self).__init__(cross_config)
self.task_config = task_config
self.rank = task_config.local_rank
self.mlm_probability = cross_config.mlm_probability
self.top_frames = task_config.top_frames
# self.weight_sum = torch.nn.Parameter(torch.tensor([0.5], dtype=torch.float32), requires_grad=True)
self.weight_FAM = cross_config.weight_FAM
self.weight_VTM = cross_config.weight_VTM
self.weight_FTM = cross_config.weight_FTM
self.weight_MLM = cross_config.weight_MLM
self.contrast_momentum = task_config.contrast_momentum
self.contrast_temperature = task_config.contrast_temperature
self.contrast_num_negative = task_config.contrast_num_negative
################## chinese text Encoder
if self.task_config.language == "chinese":
self.tokenizer = BertTokenizer.from_pretrained(self.task_config.pretrained_text)
else:
self.tokenizer = ClipTokenizer()
if self.rank == 0:
logger.info("voacb_size:{}".format(self.tokenizer.vocab_size))
t_config = AutoConfig.from_pretrained(self.task_config.pretrained_text)
self.text_encoder = TextEncoder(self.task_config, cross_config)
self.text_encoder_k = TextEncoder(self.task_config, cross_config)
self.t_projector = MLP(num_layers=cross_config.proj_num_layers)
self.t_projector_k = MLP(num_layers=cross_config.proj_num_layers)
nn.SyncBatchNorm.convert_sync_batchnorm(self.t_projector)
nn.SyncBatchNorm.convert_sync_batchnorm(self.t_projector_k)
# for MLM
t_config.hidden_size = cross_config.temporal_hidden_size
t_config.vocab_size = self.tokenizer.vocab_size
self.cls = BertLMPredictionHead(t_config)
################## visual_encoder
self.visual_encoder = VisualEncoder(self.task_config, cross_config)
self.visual_encoder_k = VisualEncoder(self.task_config, cross_config)
self.v_projector = MLP(num_layers=cross_config.proj_num_layers)
self.v_projector_k = MLP(num_layers=cross_config.proj_num_layers)
self.v_predictor = MLP(num_layers=cross_config.pred_num_layers)
nn.SyncBatchNorm.convert_sync_batchnorm(self.v_projector)
nn.SyncBatchNorm.convert_sync_batchnorm(self.v_projector_k)
nn.SyncBatchNorm.convert_sync_batchnorm(self.v_predictor)
################# momemtun mdoel pairs
self.model_pairs = [[self.visual_encoder, self.visual_encoder_k],
[self.text_encoder, self.text_encoder_k],
[self.v_projector, self.v_projector_k],
[self.t_projector, self.t_projector_k],
]
self.copy_params()
################## create queue
self.register_buffer("queue_v_cross_ng", torch.randn(cross_config.temporal_hidden_size, self.contrast_num_negative))
self.register_buffer("queue_frame_proj_ng", torch.randn(cross_config.temporal_hidden_size,
self.contrast_num_negative * self.task_config.max_frames))
self.register_buffer("queue_frame_cross_ng", torch.randn(cross_config.temporal_hidden_size,
self.contrast_num_negative * self.task_config.max_frames))
self.register_buffer("queue_title_cross_ng", torch.randn(cross_config.temporal_hidden_size, self.contrast_num_negative))
self.register_buffer("queue_tag_cross_ng", torch.randn(cross_config.temporal_hidden_size, self.contrast_num_negative))
self.queue_v_cross_ng = F.normalize(self.queue_v_cross_ng, dim=0)
self.queue_frame_proj_ng = F.normalize(self.queue_frame_proj_ng, dim=0)
self.queue_frame_cross_ng = F.normalize(self.queue_frame_cross_ng, dim=0)
self.queue_title_cross_ng = F.normalize(self.queue_title_cross_ng, dim=0)
self.queue_tag_cross_ng = F.normalize(self.queue_tag_cross_ng, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
################## loss function
self.loss_fct = CrossEn()
self.loss_fct_dual = Dual_CrossEn()
# self.apply(self.init_weights)
def get_mlm_loss(self, input_ids, input_mask):
to_mask_input_ids = input_ids.clone()
input_labels = to_mask_input_ids.clone()
input_probability_matrix = torch.full(input_labels.shape, self.mlm_probability)
masked_input_ids, input_labels = self.mask(to_mask_input_ids, self.tokenizer.vocab_size,
input_mask.device, targets=input_labels,
probability_matrix=input_probability_matrix)
masked_input_output = self.text_encoder(masked_input_ids, input_mask, return_hidden=True)
mlm_input_loss = self.calculate_mlm_loss(masked_input_output, input_labels)
return mlm_input_loss
def calculate_mlm_loss(self, sequence_output_mlm, labels):
mlm_scores = self.cls(sequence_output_mlm)
# logger.info("sequence_output_mlm.shape:{}".format(sequence_output_mlm.shape))
# logger.info("mlm_scores.shape:{}".format(mlm_scores.shape))
# logger.info("labels.shape:{}".format(labels.shape))
mlm_loss = F.cross_entropy(mlm_scores.view(-1, self.tokenizer.vocab_size),
labels.view(-1), ignore_index=-100)
return mlm_loss
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
if masked_indices is None:
masked_indices = torch.bernoulli(probability_matrix).bool()
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
# logger.info("masked_indices:{}".format(masked_indices))
# logger.info("masked_indices.shape:{}".format(masked_indices.shape))
if targets is not None:
targets[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
input_ids[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
input_ids[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
if targets is not None:
return input_ids, targets
else:
return input_ids
def loose_similarity(self, sequence_output, visual_output):
sequence_output, visual_output = sequence_output.contiguous(), visual_output.contiguous()
visual_output = visual_output.squeeze()
visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)
sequence_output = sequence_output.squeeze()
sequence_output = sequence_output / sequence_output.norm(dim=-1, keepdim=True)
logit_scale = self.text_encoder.logit_scale.exp()
logit_scale.data = torch.clamp(logit_scale.data, max=100)
# if self.rank == 0:
# logger.info("logit_scale:{},dtype:{}".format(logit_scale, logit_scale.dtype))
# logger.info("sequence_output.shape:{}".format(sequence_output.shape))
# logger.info("visual_output.shape:{}".format(visual_output.shape))
if len(visual_output.shape) == 2:
retrieve_logits = logit_scale * torch.matmul(sequence_output, visual_output.t())
else:
visual_temp = visual_output.permute(0, 2, 1)
retrieve_logits = logit_scale * torch.matmul(sequence_output, visual_temp)
if len(retrieve_logits.shape) == 3:
retrieve_logits = retrieve_logits.permute(1, 0, 2)
return retrieve_logits
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_k in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_k.data.copy_(param.data) # initialize
param_k.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_k in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_k.data = param_k.data * self.contrast_momentum + param.data * (1. - self.contrast_momentum)
@torch.no_grad()
def _dequeue_and_enqueue(self, v_fea_k, tag_fea_k, title_fea_k, frame_fea_k, frame_proj_k):
# gather keys before updating queue
# [bs,hidden]
v_fea_k = F.normalize(v_fea_k, dim=1)
tag_fea_k = F.normalize(tag_fea_k, dim=1)
title_fea_k = F.normalize(title_fea_k, dim=1)
# [bs,frame,hidden]
frame_fea_k = F.normalize(frame_fea_k, dim=2)
frame_proj_k = F.normalize(frame_proj_k, dim=2)
batch_size = v_fea_k.size(0)
frame_num = frame_fea_k.size(1)
frame_fea_k = frame_fea_k.view(-1, frame_fea_k.size(-1))
frame_proj_k = frame_proj_k.view(-1, frame_proj_k.size(-1))
ptr = int(self.queue_ptr)
# if self.rank == 0:
# logger.info(
# "begin>>>>: ptr:{},batch_size:{},frame_num:{},queue_size:{}".format(ptr, batch_size, frame_num, self.contrast_num_negative))
# logger.info("v1_self_k.shape:{},tag_cross_k.shape:{},frame_proj_k.shape:{}".format(v_fea_k.shape, tag_fea_k.shape, frame_proj_k.shape))
# replace the keys at ptr (dequeue and enqueue)
self.queue_v_cross_ng[:, ptr:ptr + batch_size] = v_fea_k.T
self.queue_tag_cross_ng[:, ptr:ptr + batch_size] = tag_fea_k.T
self.queue_title_cross_ng[:, ptr:ptr + batch_size] = title_fea_k.T
self.queue_frame_proj_ng[:, ptr * frame_num:(ptr + batch_size) * frame_num] = frame_proj_k.T
self.queue_frame_cross_ng[:, ptr * frame_num:(ptr + batch_size) * frame_num] = frame_fea_k.T
# move pointer
ptr = (ptr + batch_size) % self.contrast_num_negative
# if self.rank == 0:
# logger.info("end>>>>: ptr:{}".format(ptr))
self.queue_ptr[0] = ptr
def contrastive_loss(self, q, k, queue):
q = q.squeeze()
q = F.normalize(q, dim=1)
k = k.squeeze()
k = F.normalize(k, dim=1)
bs = q.size(0)
# logger.info("q.dtype:{},k.dtype:{}".format(q.dtype, k.dtype))
# positive logits: Nx1
# >>>>>>got error in apex:amp level=01!!!!!!!!!
# l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
l_pos = torch.matmul(q, k.T)
l_pos = torch.diag(l_pos).reshape([bs, -1])
# negative logits: NxK
# l_neg = torch.einsum('nc,ck->nk', [q, queue.clone().detach()])
l_neg = torch.matmul(q, queue.clone().detach())
# logits: Nx(1+K)
logits = torch.cat([l_pos, l_neg], dim=1)
# if self.rank == 0:
# logger.info("logits.shape:{}".format(logits.shape))
# apply temperature
logits /= self.contrast_temperature
# labels: positive key indicators
labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()
return F.cross_entropy(logits, labels)
def frame_self_loss(self, frame_fea, frame_fea_k, queue_frame_ng):
loss = 0.
for i in range(frame_fea.size(1) - 1):
frame_loss = self.contrastive_loss(frame_fea[:, i, :], frame_fea_k[:, i+1, :], queue_frame_ng) \
+ self.contrastive_loss(frame_fea[:, i+1, :], frame_fea_k[:, i, :], queue_frame_ng)
loss += frame_loss
loss = loss / (frame_fea.size(1) - 1)
return loss
def frame_cross_loss(self, frame_fea, frame_fea_k, queue_frame_ng, text_fea, text_fea_k, queue_text_ng):
loss = 0.
for i in range(frame_fea.size(1)):
frame_loss = self.contrastive_loss(text_fea, frame_fea_k[:, i, :], queue_frame_ng) + \
self.contrastive_loss(frame_fea[:, i, :], text_fea_k, queue_text_ng)
loss += frame_loss
loss = loss / frame_fea.size(1)
return loss
def forward(self, video_data, video_frame, tag_ids, tag_mask, title_ids, title_mask, global_step):
tag_ids = tag_ids.view(-1, tag_ids.shape[-1])
tag_mask = tag_mask.view(-1, tag_mask.shape[-1])
title_ids = title_ids.view(-1, title_ids.shape[-1])
title_mask = title_mask.view(-1, title_mask.shape[-1])
# bs x frames x 3 x H x W
video = torch.as_tensor(video_data)
if self.rank == 0 and global_step % self.task_config.n_display == 0:
logger.info("video1.shape:{}, dtype:{}, device:{}".format(video.shape, video.dtype, video.device))
if self.training:
# loss = 0.0
v_fea, frame_fea = self.visual_encoder(video, video_frame)
if self.task_config.dataset == "bird":
tag_fea = self.text_encoder(tag_ids, tag_mask)
title_fea = self.text_encoder(title_ids, title_mask)
# for video self supervised learning
# [bs,hidden_size]
bs, frame, hidden = frame_fea.shape
frame_fea = frame_fea.view(-1, hidden)
frame_proj = self.v_projector(frame_fea)
frame_pred = self.v_predictor(frame_proj)
frame_fea = frame_fea.view(bs, frame, hidden)
frame_proj = frame_proj.view(bs, frame, hidden)
frame_pred = frame_pred.view(bs, frame, hidden)
if self.rank == 0 and global_step % self.task_config.n_display == 0:
logger.info("v_fea.shape:{},device:{}".format(v_fea.shape, v_fea.device))
logger.info("frame_fea.shape:{},device:{}".format(frame_fea.shape, frame_fea.device))
logger.info("frame_proj.shape:{},device:{}".format(frame_proj.shape, frame_proj.device))
logger.info("title_fea.shape:{}".format(title_fea.shape))
logger.info("queue_v_cross_ng.shape:{}".format(self.queue_v_cross_ng.shape))
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update() # update the key encoder
tag_fea_k = self.text_encoder_k(tag_ids, tag_mask)
title_fea_k = self.text_encoder_k(title_ids, title_mask)
#
v_fea_k, frame_fea_k = self.visual_encoder_k(video, video_frame)
frame_fea_k = frame_fea_k.view(-1, hidden)
frame_proj_k = self.v_projector_k(frame_fea_k)
frame_fea_k = frame_fea_k.view(bs, frame, hidden)
frame_proj_k = frame_proj_k.view(bs, frame, hidden)
# compute loss
if self.rank == 0 and global_step % self.task_config.n_display == 0:
logger.info(
"dtype: v_fea:{},v_fea_k:{},title_fea:{}".format(v_fea.dtype, v_fea_k.dtype, title_fea.dtype))
# single video modality: video queue loss
loss_FAM = self.frame_self_loss(frame_pred, frame_proj_k, self.queue_frame_proj_ng)
# cross modality: cross queue loss
v_title_queue_loss = self.contrastive_loss(v_fea, title_fea_k, self.queue_title_cross_ng) \
+ self.contrastive_loss(title_fea, v_fea_k, self.queue_v_cross_ng)
if self.task_config.dataset == "bird":
v_tag_queue_loss = self.contrastive_loss(v_fea, tag_fea_k, self.queue_tag_cross_ng) \
+ self.contrastive_loss(tag_fea, v_fea_k, self.queue_v_cross_ng)
loss_VTM = (v_tag_queue_loss + v_title_queue_loss) / 2
else:
loss_VTM = v_title_queue_loss
loss_FTM = 0.
if self.task_config.use_frame_fea:
frame_title_loss = self.frame_cross_loss(frame_fea, frame_fea_k, self.queue_frame_cross_ng, title_fea,
title_fea_k, self.queue_title_cross_ng)
if self.task_config.dataset == "bird":
frame_tag_loss = self.frame_cross_loss(frame_fea, frame_fea_k, self.queue_frame_cross_ng, tag_fea,
tag_fea_k, self.queue_tag_cross_ng)
loss_FTM += (frame_tag_loss + frame_title_loss) / 2
else:
loss_FTM = frame_title_loss
# single text modality: text queue loss
# t_queue_loss = self.contrastive_loss(title_fea, tag_fea_k, self.queue_tag_cross_ng) \
# + self.contrastive_loss(tag_fea, title_fea_k, self.queue_v_cross_ng)
# dequeue_and_enqueue
self._dequeue_and_enqueue(v_fea_k, tag_fea_k, title_fea_k, frame_fea_k, frame_proj_k)
# mlm loss
mlm_title_loss = self.get_mlm_loss(title_ids, title_mask)
if self.task_config.dataset == "bird":
mlm_tag_loss = self.get_mlm_loss(tag_ids, tag_mask)
loss_MLM = (mlm_tag_loss + mlm_title_loss) / 2
else:
loss_MLM = mlm_title_loss
# total loss
loss = self.weight_FAM * loss_FAM + self.weight_VTM * loss_VTM + self.weight_FTM * loss_FTM + self.weight_MLM * loss_MLM
if self.rank == 0:
if global_step % self.task_config.n_display == 0:
logger.info("loss:{},loss_FAM:{},loss_VTM:{},loss_FTM:{},loss_MLM:{}"
"".format(loss, loss_FAM, loss_VTM, loss_FTM, loss_MLM))
if self.task_config.logdir:
loss_item = {"loss": float(loss), "loss_FAM": float(loss_FAM), "loss_VTM": float(loss_VTM),
"loss_FTM": float(loss_FTM), "loss_MLM": float(loss_MLM)}
self.task_config.writer.add_scalars('loss', loss_item, global_step=global_step)
# self.task_config.writer.add_scalar('loss', video_cross_loss, global_step=global_step)
return loss
else:
return None
class BirdModel(BirdPreTrainedModel):
def __init__(self, cross_config, task_config):
super(BirdPreTrainedModel, self).__init__(cross_config)
self.task_config = task_config
self.rank = task_config.local_rank
# self.weight_sim = torch.nn.Parameter(torch.tensor([0.9], dtype=torch.float32), requires_grad=True)
self.weight_VTM_finetune = cross_config.weight_VTM_finetune
self.weight_FTM_finetune = cross_config.weight_FTM_finetune
self.top_frames = task_config.top_frames
################## text Encoder
self.text_encoder = TextEncoder(self.task_config, cross_config)
################## visual_encoder
self.visual_encoder = VisualEncoder(self.task_config, cross_config)
################## loss function
self.loss_fct = CrossEn()
self.loss_fct_dual = Dual_CrossEn()
def frame_loss(self, query_output, frame_output):
frame_num = frame_output.size(1)
loss = 0.
for i in range(frame_num):
frame_single = frame_output[:, i, :].squeeze()
sim_matrix = self.loose_similarity(query_output, frame_single)
sim_loss = self.loss_fct(sim_matrix) + self.loss_fct(sim_matrix.T)
loss += sim_loss / frame_num
# logger.info("frame_output.shape:{},dtype:{}".format(frame_output.shape, frame_output.dtype))
# logger.info("query_output.shape:{},dtype:{}".format(query_output.shape, frame_output.dtype))
# sim_matrix = self.loose_similarity(query_output, frame_output)
# sim_matrix = torch.topk(sim_matrix, k=self.top_frames, dim=2)[0]
# sim_matrix = torch.mean(sim_matrix, dim=2)
# sim_loss = self.loss_fct(sim_matrix) + self.loss_fct(sim_matrix.T)
# loss += sim_loss
return loss
def forward(self, query_ids, query_mask, video_data, video_frame, idx, global_step):
query_ids = query_ids.view(-1, query_ids.shape[-1])
query_mask = query_mask.view(-1, query_mask.shape[-1])
# T x 3 x H x W
video = torch.as_tensor(video_data)
# if self.rank == 0:
# logger.info("video.shape:{}, dtype:{}".format(video.shape, video.dtype))
if self.training:
loss = 0.0
query_output = self.text_encoder(query_ids, query_mask)
visual_output, frame_output = self.visual_encoder(video, video_frame)
# if self.rank == 0:
# logger.info("query_output.shape:{},dtype:{}".format(query_output.shape, query_output.dtype))
# logger.info("visual_output.shape:{},dtype:{}".format(visual_output.shape, visual_output.dtype))
# logger.info("frame_output.shape:{},dtype:{}".format(frame_output.shape, frame_output.dtype))
# frame loss
if self.task_config.use_frame_fea:
frame_loss = self.frame_loss(query_output, frame_output)
loss += self.weight_FTM_finetune * frame_loss
# video loss
sim_matrix = self.loose_similarity(query_output, visual_output)
sim_loss = self.loss_fct(sim_matrix) + self.loss_fct(sim_matrix.T)
loss += self.weight_VTM_finetune * sim_loss
# loss += sim_loss
if self.task_config.local_rank == 0:
if global_step % self.task_config.n_display == 0:
logger.info(
"loss:{},frame_loss:{},sim_loss:{},type:{},sim_matrix.shape:{}".format(loss, loss - sim_loss,
sim_loss, sim_loss.dtype, sim_matrix.shape))
if self.task_config.logdir:
self.task_config.writer.add_scalar('loss', float(loss), global_step=global_step)
return loss
else:
return None
class MLP(nn.Module):
def __init__(self, in_dim=512, inner_dim=4096, out_dim=512, num_layers=2):
super(MLP, self).__init__()
# hidden layers
linear_hidden = [nn.Identity()]
for i in range(num_layers - 1):
linear_hidden.append(nn.Linear(in_dim if i == 0 else inner_dim, inner_dim))
linear_hidden.append(nn.BatchNorm1d(inner_dim))
linear_hidden.append(nn.ReLU(inplace=True))
self.linear_hidden = nn.Sequential(*linear_hidden)
self.linear_out = nn.Linear(in_dim if num_layers == 1 else inner_dim,
out_dim) if num_layers >= 1 else nn.Identity()
def forward(self, x):
x = self.linear_hidden(x)
x = self.linear_out(x)
return x
|