File size: 7,224 Bytes
6e5b74f
0fc7a46
 
 
 
 
9ce2bc6
1d1cc4d
9ce2bc6
 
 
 
8fcb305
1684436
17bcc13
 
 
 
 
9ce2bc6
 
0330034
17bcc13
3c2f74e
4145ccd
 
 
 
17bcc13
9df39b1
 
 
 
 
 
 
4ceba74
 
9ce2bc6
 
3c2f74e
 
b3ccbc7
1684436
 
17bcc13
1684436
 
b3ccbc7
1684436
3c2f74e
1684436
3c2f74e
 
 
 
 
7a8e3f2
9ce2bc6
1d1cc4d
3c2f74e
 
 
 
 
 
 
 
1684436
9ce2bc6
4145ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2f74e
 
4145ccd
3c2f74e
 
04c0c84
 
 
 
 
3c2f74e
4145ccd
 
 
04c0c84
4145ccd
 
 
3c2f74e
4145ccd
 
3c2f74e
4145ccd
04c0c84
4145ccd
 
 
3c2f74e
 
 
4145ccd
 
 
 
 
 
 
3c2f74e
 
4145ccd
 
 
 
 
9ce2bc6
 
3c2f74e
9ce2bc6
3c2f74e
aa274d7
9ce2bc6
aa274d7
7a8e3f2
9ce2bc6
aa274d7
 
9ce2bc6
aa274d7
 
 
9ce2bc6
3c2f74e
17bcc13
3c2f74e
 
4ceba74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from __future__ import annotations
from huggingface_hub import HfApi, snapshot_download
from concurrent.futures import ThreadPoolExecutor
import asyncio
import ast
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
import torch
from diffusers import StableDiffusionPipeline
import uuid
from diffusers import DiffusionPipeline
from tqdm import tqdm
from safetensors.torch import load_file
import cv2

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
DTYPE = torch.float32
api = HfApi()
executor = ThreadPoolExecutor()
model_cache = {}

model_id = "Lykon/dreamshaper-xl-v2-turbo"
custom_pipe = DiffusionPipeline.from_pretrained(
    model_id,
    custom_pipeline="latent_consistency_txt2img",
    custom_revision="main",
    safety_checker=None,
    feature_extractor=None
)
custom_pipe.to(torch_device="cpu", torch_dtype=DTYPE)
pipe = custom_pipe

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    return random.randint(0, MAX_SEED) if randomize_seed else seed

def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
    unique_name = str(uuid.uuid4()) + '.png'
    img.save(unique_name)
    gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
    return unique_name

def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
    with ThreadPoolExecutor() as executor:
        return list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))

def generate(prompt: str, seed: int = 0, width: int = 512, height: int = 512,
             guidance_scale: float = 8.0, num_inference_steps: int = 4,
             num_images: int = 1, randomize_seed: bool = False,
             progress=gr.Progress(track_tqdm=True),
             profile: gr.OAuthProfile | None = None) -> tuple[list[str], int]:
    seed = randomize_seed_fn(seed, randomize_seed)
    torch.manual_seed(seed)
    start_time = time.time()
    outputs = pipe(prompt=prompt, negative_prompt="", height=height, width=width,
                   guidance_scale=guidance_scale, num_inference_steps=num_inference_steps,
                   num_images_per_prompt=num_images, output_type="pil", lcm_origin_steps=50).images
    print(f"Generation took {time.time() - start_time:.2f} seconds")
    paths = save_images(outputs, profile, metadata={"prompt": prompt, "seed": seed,
                                                    "width": width, "height": height,
                                                    "guidance_scale": guidance_scale,
                                                    "num_inference_steps": num_inference_steps})
    return paths, seed

def validate_and_list_models(hfuser):
    try:
        models = api.list_models(author=hfuser)
        return [model.modelId for model in models if model.pipeline_tag == "text-to-image"]
    except Exception:
        return []

def parse_user_model_dict(user_model_dict_str):
    try:
        data = ast.literal_eval(user_model_dict_str)
        if isinstance(data, dict) and all(isinstance(v, list) for v in data.values()):
            return data
        return {}
    except Exception:
        return {}

def load_model(model_id):
    if model_id in model_cache:
        return f"{model_id} loaded from cache"
    try:
        path = snapshot_download(repo_id=model_id, cache_dir="model_cache", token=os.getenv("HF_TOKEN"))
        model_cache[model_id] = path
        return f"{model_id} loaded successfully"
    except Exception as e:
        return f"{model_id} failed to load: {str(e)}"

def run_models(models, parallel):
    if parallel:
        futures = [executor.submit(load_model, m) for m in models]
        return [f.result() for f in futures]
    return [load_model(m) for m in models]

with gr.Blocks() as demo:
    with gr.Row():
        gr.HTML("""
            <p id="project-links" align="center">
                <a href='https://huggingface.co/spaces/charliebaby2023/Fast_Stable_diffusion_CPU/edit/main/app_demo.py'>Edit this app_demo py file</a>
                <p> this is currently running the Lykon/dreamshaper-xl-v2-turbo model</p>
                <p><fast stable diffusion, CPU</p>
            </p>
        """)
        with gr.Column(scale=1):
            with gr.Row():
                hfuser_input = gr.Textbox(label="Hugging Face Username")
                hfuser_models = gr.Dropdown(label="Models from User", choices=["Choose A Model"], value="Choose A Model", multiselect=True, visible=False)
                user_model_dict = gr.Textbox(visible=False, label="Dict Input (e.g., {'username': ['model1', 'model2']})")
            with gr.Row():
                run_btn = gr.Button("Load Models")
        with gr.Column(scale=3):
            with gr.Row():
                parallel_toggle = gr.Checkbox(label="Load in Parallel", value=True)
            with gr.Row():
                output = gr.Textbox(label="Output", lines=3)

    def update_models(hfuser):
        if hfuser:
            models = validate_and_list_models(hfuser)
            label = f"Models found: {len(models)}"
            return gr.update(choices=models, label=label, visible=bool(models))
        return gr.update(choices=[], label='', visible=False)

    def update_from_dict(dict_str):
        parsed = parse_user_model_dict(dict_str)
        if not parsed:
            return gr.update(), gr.update()
        hfuser = next(iter(parsed))
        models = parsed[hfuser]
        label = f"Models found: {len(models)}"
        return gr.update(value=hfuser), gr.update(choices=models, value=models, label=label)

    hfuser_input.change(update_models, hfuser_input, hfuser_models)
    user_model_dict.change(update_from_dict, user_model_dict, [hfuser_input, hfuser_models])
    run_btn.click(run_models, [hfuser_models, parallel_toggle], output)

    with gr.Group():
        with gr.Row():
            prompt = gr.Text(placeholder="Enter your prompt", show_label=False, container=False)
            run_button = gr.Button("Run", scale=0)
        gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery")

    with gr.Accordion("Advanced options", open=False):
        seed = gr.Slider(0, MAX_SEED, value=0, step=1, randomize=True, label="Seed")
        randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
        with gr.Row():
            width = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Width")
            height = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Height")
        with gr.Row():
            guidance_scale = gr.Slider(2.0, 14.0, value=8.0, step=0.1, label="Guidance Scale")
            num_inference_steps = gr.Slider(1, 8, value=4, step=1, label="Inference Steps")
        num_images = gr.Slider(1, 8, value=1, step=1, label="Number of Images")

    run_button.click(
        fn=generate,
        inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed],
        outputs=[gallery, seed]
    )